×

zbMATH — the first resource for mathematics

Boundary conditions for Kerr-AdS perturbations. (English) Zbl 1342.83148
Summary: The Teukolsky master equation and its associated spin-weighted spheroidal harmonic decomposition simplify considerably the study of linear gravitational perturbations of the Kerr(-AdS) black hole. However, the formulation of the problem is not complete before we assign the physically relevant boundary conditions. We find a set of two Robin boundary conditions (BCs) that must be imposed on the Teukolsky master variables to get perturbations that are asymptotically global AdS, i.e. that asymptotes to the Einstein Static Universe. In the context of the AdS/CFT correspondence, these BCs allow a nonzero expectation value for the CFT stress-energy tensor while keeping fixed the boundary metric. When the rotation vanishes, we also find the gauge invariant differential map between the Teukolsky and the Kodama-Ishisbashi (Regge-Wheeler-Zerilli) formalisms. One of our Robin BCs maps to the scalar sector and the other to the vector sector of the Kodama-Ishisbashi decomposition. The Robin BCs on the Teukolsky variables will allow for a quantitative study of instability timescales and quasinormal mode spectrum of the Kerr-AdS black hole. As a warm-up for this programme, we use the Teukolsky formalism to recover the quasinormal mode spectrum of global AdS-Schwarzschild, complementing previous analysis in the literature.

MSC:
83C57 Black holes
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Cardoso, V.; etal., NR/HEP: roadmap for the future, Class. Quant. Grav., 29, 244001, (2012) · Zbl 1260.83001
[2] Berti, E.; Cardoso, V.; Starinets, AO, Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26, 163001, (2009) · Zbl 1173.83001
[3] Bizon, P.; Rostworowski, A., On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett., 107, 031102, (2011)
[4] Dias, OJ; Horowitz, GT; Santos, JE, Gravitational turbulent instability of anti-de Sitter space, Class. Quant. Grav., 29, 194002, (2012) · Zbl 1254.83030
[5] Dias, OJ; Horowitz, GT; Marolf, D.; Santos, JE, On the nonlinear stability of asymptotically anti-de Sitter solutions, Class. Quant. Grav., 29, 235019, (2012) · Zbl 1258.83022
[6] Price, RH; Pullin, J., Colliding black holes: the close limit, Phys. Rev. Lett., 72, 3297, (1994) · Zbl 0973.83532
[7] Teukolsky, S., Rotating black holes — separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett., 29, 1114, (1972)
[8] Teukolsky, SA, Perturbations of a rotating black hole. 1. fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J., 185, 635, (1973)
[9] S. Chandrasekhar, The Gravitational Perturbations of the Kerr Black Hole. I. The Perturbations in the Quantities which Vanish in the Stationary State, Proc. R. Soc. Lond.A 358 (1978) 421.
[10] Chandrasekhar, S., The gravitational perturbations of the Kerr black hole. II. the perturbations in the quantities which are finite in the stationary state, Proc. R. Soc. Lond., A 358, 441, (1978)
[11] S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press, New York U.S.A. (1992). · Zbl 0511.53076
[12] Regge, T.; Wheeler, JA, Stability of a Schwarzschild singularity, Phys. Rev., 108, 1063, (1957) · Zbl 0079.41902
[13] Zerilli, FJ, Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett., 24, 737, (1970)
[14] Kodama, H.; Ishibashi, A., A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys., 110, 701, (2003) · Zbl 1050.83016
[15] Hawking, S.; Reall, H., Charged and rotating AdS black holes and their CFT duals, Phys. Rev., D 61, 024014, (2000)
[16] Cardoso, V.; Dias, OJ, Small Kerr-anti-de Sitter black holes are unstable, Phys. Rev., D 70, 084011, (2004)
[17] Kunduri, HK; Lucietti, J.; Reall, HS, Gravitational perturbations of higher dimensional rotating black holes: tensor perturbations, Phys. Rev., D 74, 084021, (2006)
[18] Cardoso, V.; Dias, OJ; Yoshida, S., Classical instability of Kerr-AdS black holes and the issue of final state, Phys. Rev., D 74, 044008, (2006)
[19] Lucietti, J.; Reall, HS, Gravitational instability of an extreme Kerr black hole, Phys. Rev., D 86, 104030, (2012)
[20] Horowitz, GT; Hubeny, VE, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev., D 62, 024027, (2000)
[21] Birmingham, D.; Sachs, I.; Solodukhin, SN, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett., 88, 151301, (2002)
[22] Kovtun, PK; Starinets, AO, Quasinormal modes and holography, Phys. Rev., D 72, 086009, (2005)
[23] Friess, JJ; Gubser, SS; Michalogiorgakis, G.; Pufu, SS, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP, 04, 080, (2007)
[24] Cohen, JM; Kegeles, LS, Space-time perturbations, Phys. Lett., A 54, 5, (1975)
[25] Chrzanowski, P., Vector potential and metric perturbations of a rotating black hole, Phys. Rev., D 11, 2042, (1975)
[26] Kegeles, L.; Cohen, J., Constructive procedure for perturbations of space-times, Phys. Rev., D 19, 1641, (1979)
[27] Wald, RM, Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations, Phys. Rev. Lett., 41, 203, (1978)
[28] Stewart, JM, Hertz-bromwich-Debye-Whittaker-Penrose potentials in general relativity, Proc. Roy. Soc. Lond., A 367, 527, (1979)
[29] Dias, OJ; Reall, HS; Santos, JE, Kerr-CFT and gravitational perturbations, JHEP, 08, 101, (2009)
[30] Geroch, RP, Structure of the gravitational field at spatial infinity, J. Math. Phys., 13, 956, (1972)
[31] Boucher, W.; Gibbons, G.; Horowitz, GT, A uniqueness theorem for anti-de Sitter space-time, Phys. Rev., D 30, 2447, (1984)
[32] Henneaux, M.; Teitelboim, C., Asymptotically anti-de Sitter spaces, Commun. Math. Phys., 98, 391, (1985) · Zbl 1032.83502
[33] Balasubramanian, V.; Kraus, P., A stress tensor for anti-de Sitter gravity, Commun. Math. Phys., 208, 413, (1999) · Zbl 0946.83013
[34] Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595, (2001) · Zbl 0984.83043
[35] Michalogiorgakis, G.; Pufu, SS, Low-lying gravitational modes in the scalar sector of the global ads_{4} black hole, JHEP, 02, 023, (2007)
[36] Compere, G.; Marolf, D., Setting the boundary free in AdS/CFT, Class. Quant. Grav., 25, 195014, (2008) · Zbl 1151.83305
[37] Andrade, T.; Marolf, D., AdS/CFT beyond the unitarity bound, JHEP, 01, 049, (2012) · Zbl 1306.81069
[38] Warnick, C., The massive wave equation in asymptotically AdS spacetimes, Commun. Math. Phys., 321, 85, (2013) · Zbl 1271.83021
[39] G.H. Holzegel and C.M. Warnick, Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes, arXiv:1209.3308 [INSPIRE]. · Zbl 1292.83033
[40] Starobinsky, AA, Amplification of waves during reflection from a rotating black hole, Sov. Phys. JETP, 37, 28, (1973)
[41] Starobinsky, AA; Churilov, SM, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole, Sov. Phys. JETP, 38, 1, (1973)
[42] Teukolsky, S.; Press, W., Perturbations of a rotating black hole. III: interaction of the hole with gravitational and electromagnet ic radiation, Astrophys. J., 193, 443, (1974)
[43] Cardoso, V.; Lemos, JP, Quasinormal modes of Schwarzschild anti-de Sitter black holes: electromagnetic and gravitational perturbations, Phys. Rev., D 64, 084017, (2001)
[44] Berti, E.; Kokkotas, K., Quasinormal modes of Reissner-Nordstrom-anti-de Sitter black holes: scalar, electromagnetic and gravitational perturbations, Phys. Rev., D 67, 064020, (2003) · Zbl 1222.83091
[45] V. Cardoso, O.J.C. Dias, G.S. Hartnett, L. Lehner and J.E. Santos, Thermalization, quasinormal modes and superradiance in Kerr-AdS, in preparation. · Zbl 1333.83063
[46] Natario, J.; Schiappa, R., On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity, Adv. Theor. Math. Phys., 8, 1001, (2004) · Zbl 1097.83021
[47] Cardoso, V.; Konoplya, R.; Lemos, JP, Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter space-times: a complete study on the asymptotic behavior, Phys. Rev., D 68, 044024, (2003) · Zbl 1244.83017
[48] Musiri, S.; Ness, S.; Siopsis, G., Perturbative calculation of quasi-normal modes of AdS Schwarzschild black holes, Phys. Rev., D 73, 064001, (2006)
[49] Siopsis, G., Low frequency quasi-normal modes of AdS black holes, JHEP, 05, 042, (2007)
[50] Carter, B., Hamilton-Jacobi and Schrödinger separable solutions of einstein’s equations, Commun. Math. Phys., 10, 280, (1968) · Zbl 0162.59302
[51] Chambers, CM; Moss, IG, Stability of the Cauchy horizon in Kerr-de Sitter space-times, Class. Quant. Grav., 11, 1035, (1994)
[52] Dias, OJ; Monteiro, R.; Reall, HS; Santos, JE, A scalar field condensation instability of rotating anti-de Sitter black holes, JHEP, 11, 036, (2010) · Zbl 1294.83042
[53] Caldarelli, MM; Cognola, G.; Klemm, D., Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav., 17, 399, (2000) · Zbl 0945.83019
[54] Gibbons, G.; Perry, M.; Pope, C., The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav., 22, 1503, (2005) · Zbl 1068.83010
[55] Dias, OJ; Santos, JE; Stein, M., Kerr-AdS and its near-horizon geometry: perturbations and the Kerr/CFT correspondence, JHEP, 10, 182, (2012)
[56] Lousto, CO; Whiting, BF, Reconstruction of black hole metric perturbations from Weyl curvature, Phys. Rev., D 66, 024026, (2002)
[57] Newman, E.; Penrose, R., Note on the Bondi-metzner-Sachs group, J. Math. Phys., 7, 863, (1966)
[58] Goldberg, J.; MacFarlane, A.; Newman, E.; Rohrlich, F.; Sudarshan, E., Spin s spherical harmonics and edth, J. Math. Phys., 8, 2155, (1967) · Zbl 0155.57402
[59] Dias, OJ; Reall, HS, Algebraically special perturbations of the Schwarzschild solution in higher dimensions, Class. Quant. Grav., 30, 095003, (2013) · Zbl 1269.83045
[60] Wald, R., On perturbations of a Kerr black hole, J. Math. Phys., 14, 1453, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.