zbMATH — the first resource for mathematics

Unitarising matrix element + parton shower merging. (English) Zbl 1342.81693
Summary: We revisit the CKKW-L method for merging tree-level matrix elements with parton showers, and amend it with an add/subtract scheme to minimise dependencies on the merging scale. The scheme is constructed to, as far as possible, recover the unitary nature of the underlying parton shower, so that the inclusive cross section is retained for each jet multiplicity separately.

81V05 Strong interaction, including quantum chromodynamics
Full Text: DOI
[1] Lavesson, N.; Lönnblad, L., Extending CKKW-merging to one-loop matrix elements, JHEP, 12, 070, (2008)
[2] Hamilton, K.; Nason, P., Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP, 06, 039, (2010)
[3] Hoche, S.; Krauss, F.; Schonherr, M.; Siegert, F., NLO matrix elements and truncated showers, JHEP, 08, 123, (2011)
[4] Alioli, S.; Hamilton, K.; Re, E., Practical improvements and merging of POWHEG simulations for vector boson production, JHEP, 09, 104, (2011)
[5] Hamilton, K.; Nason, P.; Zanderighi, G., MINLO: multi-scale improved NLO, JHEP, 10, 155, (2012)
[6] Gehrmann, T.; Hoche, S.; Krauss, F.; Schonherr, M.; Siegert, F., NLO QCD matrix elements + parton showers in e\^{}{+}e\^{}{−} → hadrons, JHEP, 01, 144, (2013)
[7] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, arXiv:1207.5030 [INSPIRE].
[8] Frederix, R.; Frixione, S., Merging meets matching in MC@NLO, JHEP, 12, 061, (2012)
[9] Bauer, CW; Tackmann, FJ; Thaler, J., Geneva. I. A new framework for event generation, JHEP, 12, 010, (2008)
[10] Bauer, CW; Tackmann, FJ; Thaler, J., Geneva. II. A phase space generator from a reweighted parton shower, JHEP, 12, 011, (2008)
[11] S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, arXiv:1211.7049 [INSPIRE].
[12] Catani, S.; Krauss, F.; Kuhn, R.; Webber, B., QCD matrix elements + parton showers, JHEP, 11, 063, (2001)
[13] Lönnblad, L., Correcting the color dipole cascade model with fixed order matrix elements, JHEP, 05, 046, (2002)
[14] Lavesson, N.; Lönnblad, L., W+jets matrix elements and the dipole cascade, JHEP, 07, 054, (2005)
[15] Hoeche, S.; Krauss, F.; Schumann, S.; Siegert, F., QCD matrix elements and truncated showers, JHEP, 05, 053, (2009)
[16] Lönnblad, L.; Prestel, S., Matching tree-level matrix elements with interleaved showers, JHEP, 03, 019, (2012)
[17] Bengtsson, M.; Sjöstrand, T., A comparative study of coherent and noncoherent parton shower evolution, Nucl. Phys., B 289, 810, (1987)
[18] Bengtsson, M.; Sjöstrand, T., Coherent parton showers versus matrix elements: implications of PETRA - PEP data, Phys. Lett., B 185, 435, (1987)
[19] G. Miu, A Matrix element based modification of the parton shower, hep-ph/9804317 [INSPIRE].
[20] Miu, G.; Sjöstrand, T., W production in an improved parton shower approach, Phys. Lett., B 449, 313, (1999)
[21] Giele, WT; Kosower, DA; Skands, PZ, A simple shower and matching algorithm, Phys. Rev., D 78, 014026, (2008)
[22] Giele, W.; Kosower, D.; Skands, P., Higher-order corrections to timelike jets, Phys. Rev., D 84, 054003, (2011)
[23] Sjöstrand, T.; Mrenna, S.; Skands, PZ, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun., 178, 852, (2008) · Zbl 1196.81038
[24] Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP, 11, 040, (2004)
[25] Alwall, J.; etal., A standard format for LES houches event files, Comput. Phys. Commun., 176, 300, (2007)
[26] Cacciari, M.; Salam, GP; Soyez, G., Fastjet user manual, Eur. Phys. J., C 72, 1896, (2012) · Zbl 1393.81007
[27] Balázs, C.; Huston, J.; Puljak, I., Higgs production: A comparison of parton showers and resummation, Phys. Rev., D 63, 014021, (2001)
[28] Corke, R.; Sjöstrand, T., Interleaved parton showers and tuning prospects, JHEP, 03, 032, (2011)
[29] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003 (2012).
[30] A. Buckley et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].
[31] ATLAS collaboration, Study of jets produced in association with a W boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev., D 85, 092002, (2012)
[32] ATLAS collaboration, Study of jet shapes in inclusive jet production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev., D 83, 052003, (2011)
[33] ATLAS collaboration, Measurement of underlying event characteristics using charged particles in pp collisions at \( \sqrt{s}=900GeV \) and 7 TeV with the ATLAS detector, Phys. Rev., D 83, 112001, (2011)
[34] Rubin, M.; Salam, GP; Sapeta, S., Giant QCD K-factors beyond NLO, JHEP, 09, 084, (2010)
[35] Campanario, F.; Sapeta, S., WZ production beyond NLO for high-pt observables, Phys. Lett., B 718, 100, (2012)
[36] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[37] Hoeche, S.; Krauss, F.; Schonherr, M.; Siegert, F., A critical appraisal of NLO+PS matching methods, JHEP, 09, 049, (2012)
[38] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W+n-jet predictions with MC@NLO in Sherpa, Physical Review Letters (2012) [arXiv:1201.5882] [INSPIRE].
[39] Hirschi, V.; etal., Automation of one-loop QCD corrections, JHEP, 05, 044, (2011) · Zbl 1296.81138
[40] L. Lönnblad, Fooling Around with the Sudakov Veto Algorithm, arXiv:1211.7204 [INSPIRE].
[41] Dreiner, HK; Krämer, M.; Tattersall, J., How low can SUSY go? matching, monojets and compressed spectra, Europhys. Lett., 99, 61001, (2012)
[42] L. Lönnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers, arXiv:1211.7278 [INSPIRE].
[43] S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, arXiv:1211.5467 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.