×

zbMATH — the first resource for mathematics

Duality in two-dimensional \((2,2)\) supersymmetric non-abelian gauge theories. (English) Zbl 1342.81635
Summary: We study the low energy behaviour of \(N=(2, 2)\) supersymmetric gauge theories in \(1+1\) dimensions, with orthogonal and symplectic gauge groups and matters in the fundamental representation. We observe supersymmetry breaking in super-Yang-Mills theory and in theories with small numbers of flavors. For larger numbers of flavors, we discover duality between regular theories with different gauge groups and matter contents, where regularity refers to absence of quantum Coulomb branch. The result is applied to study families of superconformal field theories that can be used for superstring compactifications, with corners corresponding to three-dimensional Calabi-Yau manifolds. This work is motivated by recent development in mathematics concerning equivalences of derived categories.

MSC:
81T75 Noncommutative geometry methods in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Witten, E., Phases of N = 2 theories in two-dimensions, Nucl. Phys., B 403, 159, (1993) · Zbl 0910.14020
[2] Hori, K.; Tong, D., Aspects of non-abelian gauge dynamics in two-dimensional N = (2, 2) theories, JHEP, 05, 079, (2007)
[3] Witten, E., Θ vacua in two-dimensional quantum chromodynamics, Nuovo Cim., A 51, 325, (1979)
[4] Affleck, I.; Dine, M.; Seiberg, N., Dynamical supersymmetry breaking in supersymmetric QCD, Nucl. Phys., B 241, 493, (1984)
[5] Seiberg, N., Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev., D 49, 6857, (1994)
[6] Seiberg, N., Electric-magnetic duality in supersymmetric nonabelian gauge theories, Nucl. Phys., B 435, 129, (1995) · Zbl 1020.81912
[7] Intriligator, KA; Seiberg, N., Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N (c)) gauge theories, Nucl. Phys., B 444, 125, (1995) · Zbl 0990.81738
[8] Intriligator, KA; Pouliot, P., Exact superpotentials, quantum vacua and duality in supersymmetric SP(N(c)) gauge theories, Phys. Lett., B 353, 471, (1995)
[9] Affleck, I.; Harvey, JA; Witten, E., Instantons and (super)symmetry breaking in (2+1)-dimensions, Nucl. Phys., B 206, 413, (1982)
[10] Boer, J.; Hori, K.; Oz, Y., Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys., B 500, 163, (1997) · Zbl 0934.81065
[11] Aharony, O.; Hanany, A.; Intriligator, KA; Seiberg, N.; Strassler, M., Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys., B 499, 67, (1997) · Zbl 0934.81063
[12] Karch, A., Seiberg duality in three-dimensions, Phys. Lett., B 405, 79, (1997)
[13] Aharony, O., IR duality in D = 3 N = 2 supersymmetric usp(2N(c)) and U(N(c)) gauge theories, Phys. Lett., B 404, 71, (1997)
[14] A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, arXiv:1104.0466 [INSPIRE].
[15] A. Bondal and D. Orlov, Derived categories of coherent sheaves, Proceedings ICM. Vol. II, Beijing China (2002), Higher Education Press, Beijing China (2002), pg. 47 [math/0206295]. · Zbl 0996.18007
[16] S. Hosono and H. Takagi, Mirror symmetry and projective geometry of Reye congruences I, arXiv:1101.2746 [INSPIRE]. · Zbl 1298.14043
[17] E.A. Rødland, The Pfaffian Calabi-Yau, its Mirror and their link to the Grassmannian G(2, 7), Compositio Math.122 (2000) 135 [math/9801092]. · Zbl 0974.14026
[18] Seiberg, N., IR dynamics on branes and space-time geometry, Phys. Lett., B 384, 81, (1996)
[19] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE]. · Zbl 1058.81717
[20] Witten, E., Toroidal compactification without vector structure, JHEP, 02, 006, (1998) · Zbl 0958.81065
[21] M. Reid, The complete intersection of two or more quadrics, Ph.D. Thesis, Trinity College, Cambridge U.K. (1972).
[22] A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, alg-geom/9506012.
[23] A. Kuznetsov, Derived Categories of Quadric Fibrations and Intersections of Quadrics, math/510670.
[24] Dixon, LJ; Ginsparg, PH; Harvey, JA, \( \widehat{c}=1 \) superconformal field theory, Nucl. Phys., B 306, 470, (1988)
[25] Intriligator, KA; Vafa, C., Landau-Ginzburg orbifolds, Nucl. Phys., B 339, 95, (1990)
[26] Hanany, A.; Hori, K., Branes and N = 2 theories in two-dimensions, Nucl. Phys., B 513, 119, (1998) · Zbl 1052.81625
[27] P.H. Ginsparg, Applied conformal field theory, hep-th/9108028 [INSPIRE].
[28] Caldararu, A.; Distler, J.; Hellerman, S.; Pantev, T.; Sharpe, E., Non-birational twisted derived equivalences in abelian glsms, Commun. Math. Phys., 294, 605, (2010) · Zbl 1231.14035
[29] A. Givental, Homological geometry and mirror symmetry, Proceedings of ICM 1994, Zürich Switzerland (1994), Birkhäuser, Basel Switzerland (1995), pg. 472.
[30] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
[31] Coleman, SR, More about the massive Schwinger model, Annals Phys., 101, 239, (1976)
[32] H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton U.K. (1939). · JFM 65.0058.02
[33] Witten, E., On the conformal field theory of the Higgs branch, JHEP, 07, 003, (1997)
[34] Aharony, O.; Berkooz, M., IR dynamics of D = 2, N = (4, 4) gauge theories and DLCQ of ’little string theories’, JHEP, 10, 030, (1999) · Zbl 0957.81028
[35] E. Witten, The Verlinde algebra and the cohomology of the Grassmannian, hep-th/9312104 [INSPIRE]. · Zbl 0863.53054
[36] Witten, E., On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys., A 9, 4783, (1994) · Zbl 0985.81718
[37] Silverstein, E.; Witten, E., Global U(1) R symmetry and conformal invariance of (0, 2) models, Phys. Lett., B 328, 307, (1994)
[38] Hori, K.; Kapustin, A., Duality of the fermionic 2 − D black hole and N = 2 Liouville theory as mirror symmetry, JHEP, 08, 045, (2001)
[39] Cecotti, S.; Vafa, C., On classification of N = 2 supersymmetric theories, Commun. Math. Phys., 158, 569, (1993) · Zbl 0787.58049
[40] M. Krawitz, FJRW rings and Landau-Ginzburg Mirror Symmetry, Ph.D. Thesis, University of Michigan, Ann Arbor U.S.A. (2010).
[41] M. Herbst, K. Hori and D. Page, Phases Of N = 2 Theories In 1 + 1 Dimensions With Boundary, arXiv:0803.2045 [INSPIRE].
[42] Borisov, L.; Caldararu, A., The pfaffian-Grassmannian derived equivalence, J. Alg. Geom., 18, 201, (2009) · Zbl 1181.14020
[43] A. Kuznetsov, Homological projective duality for Grassmannians of lines, math/0610957.
[44] Kuznetsov, A., Homological projective duality, Publ. Math. Inst. Hautes Études Sci., 105, 157, (2007) · Zbl 1131.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.