×

zbMATH — the first resource for mathematics

Boundaries in the Moyal plane. (English) Zbl 1342.81633
Summary: We study the oscillations of a scalar field on a noncommutative disc implementing the boundary as the limit case of an interaction with an appropriately chosen confining background. The space of quantum fluctuations of the field is finite dimensional and displays the rotational and parity symmetry of the disc. We perform a numerical evaluation of the (finite) Casimir energy and obtain similar results as for the fuzzy sphere and torus.
MSC:
81T75 Noncommutative geometry methods in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Snyder, HS, Quantized space-time, Phys. Rev., 71, 38, (1947) · Zbl 0035.13101
[2] Doplicher, S.; Fredenhagen, K.; Roberts, JE, Space-time quantization induced by classical gravity, Phys. Lett., B 331, 39, (1994)
[3] Douglas, MR; Nekrasov, NA, Noncommutative field theory, Rev. Mod. Phys., 73, 977, (2001) · Zbl 1205.81126
[4] Szabo, RJ, Quantum field theory on noncommutative spaces, Phys. Rept., 378, 207, (2003) · Zbl 1042.81581
[5] Madore, J., The fuzzy sphere, Class. Quant. Grav., 9, 69, (1992) · Zbl 0742.53039
[6] Connes, A.; Douglas, MR; Schwarz, AS, Noncommutative geometry and matrix theory: compactification on tori, JHEP, 02, 003, (1998)
[7] Groenewold, HJ, On the principles of elementary quantum mechanics, Physica, 12, 405, (1946) · Zbl 0060.45002
[8] Moyal, JE, Quantum mechanics as a statistical theory, Proc. Cambr. Phil. Soc., 45, 99, (1949) · Zbl 0031.33601
[9] Gomis, J.; Mehen, T.; Wise, MB, Quantum field theories with compact noncommutative extra dimensions, JHEP, 08, 029, (2000) · Zbl 0989.81617
[10] Huang, W-H, Casimir effect on the radius stabilization of the noncommutative torus, Phys. Lett., B 497, 317, (2001) · Zbl 0971.81532
[11] Myers, RC, Dielectric branes, JHEP, 12, 022, (1999) · Zbl 0958.81091
[12] Huang, W-H, Quantum stabilization of compact space by extra fuzzy space, Phys. Lett., B 537, 311, (2002) · Zbl 0995.81082
[13] Fabi, S.; Harms, B.; Karatheodoris, G., Dark energy from Casimir energy on noncommutative extra dimensions, Phys. Rev., D 74, 083506, (2006)
[14] Fabi, S.; Harms, B.; Karatheodoris, G., Zero point energy on extra dimension: noncommutative torus, Phys. Rev., D 76, 065010, (2007)
[15] Chaichian, M.; Demichev, A.; Prešnajder, P.; Sheikh-Jabbari, MM; Tureanu, A., Quantum theories on noncommutative spaces with nontrivial topology: Aharonov-Bohm and Casimir effects, Nucl. Phys., B 611, 383, (2001) · Zbl 0971.81164
[16] Demetrian, M., Casimir effect in four simple situations: including a noncommutative two sphere, Fizika, B 11, 175, (2002)
[17] Lizzi, F.; Vitale, P.; Zampini, A., The fuzzy disc, JHEP, 08, 057, (2003)
[18] Lizzi, F.; Vitale, P.; Zampini, A., The beat of a fuzzy drum: fuzzy Bessel functions for the disc, JHEP, 09, 080, (2005)
[19] Lizzi, F.; Vitale, P.; Zampini, A., The fuzzy disc: a review, J. Phys. Conf. Ser., 53, 830, (2006)
[20] Pinzul, A.; Stern, A., Absence of the holographic principle in noncommutative Chern-Simons theory, JHEP, 11, 023, (2001)
[21] Balachandran, AP; Gupta, KS; Kurkcuoglu, S., Edge currents in noncommutative Chern-Simons theory from a new matrix model, JHEP, 09, 007, (2003)
[22] Voros, A., Wentzel-Kramers-Brillouin method in the Bargmann representation, Phys. Rev., A 40, 6814, (1989)
[23] Hammou, AB; Lagraa, M.; Sheikh-Jabbari, MM, Coherent state induced star product on \( R_3^{λ } \) and the fuzzy sphere, Phys. Rev., D 66, 025025, (2002)
[24] Galluccio, S.; Lizzi, F.; Vitale, P., Twisted noncommutative field theory with the Wick-voros and Moyal products, Phys. Rev., D 78, 085007, (2008)
[25] Balachandran, AP; Martone, M., Twisted quantum fields on Moyal and Wick-voros planes are inequivalent, Mod. Phys. Lett., A 24, 1721, (2009) · Zbl 1176.81127
[26] Balachandran, AP; Ibort, A.; Marmo, G.; Martone, M., Inequivalence of QFT’s on noncommutative spacetimes: Moyal versus Wick-voros, Phys. Rev., D 81, 085017, (2010)
[27] A.A. Varshovi, \(α\)\^{*}-cohomology and classification of translation-invariant non-commutative quantum field theories, arXiv:1210.0695 [INSPIRE]. · Zbl 1295.81126
[28] A.A. Varshovi, Groenewold-Moyal product, α\^{*}-cohomology and classification of translation-invariant non-commutative structures, arXiv:1210.1004 [INSPIRE]. · Zbl 1286.81158
[29] Lizzi, F.; Spisso, B., Noncommutative field theory: numerical analysis with the fuzzy disc, Int. J. Mod. Phys., A 27, 1250137, (2012) · Zbl 1260.81234
[30] Fosco, CD; Moreno, GA, Casimir effect in 2+1 dimensional noncommutative theories, Phys. Lett., B 659, 901, (2008) · Zbl 1246.81399
[31] Scholtz, FG; Chakraborty, B.; Govaerts, J.; Vaidya, S., Spectrum of the non-commutative spherical well, J. Phys., A 40, 14581, (2007) · Zbl 1126.81034
[32] Dias, NC; Prata, JN, Wigner functions with boundaries, J. Math. Phys., 43, 4602, (2002) · Zbl 1060.81045
[33] Kryukov, S.; Walton, MA, On infinite walls in deformation quantization, Annals Phys., 317, 474, (2005) · Zbl 1091.81053
[34] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, 7\^{th} edition, Academic Press (2007). · Zbl 1208.65001
[35] M. Abramowitz and I.A. Stegun eds., Handbook of mathematical functions, 9\^{th} edition, Dover Publications (1972).
[36] Gatteschi, L., Asymptotics and bounds for the zeros of Laguerre polynomials: a survey, J. Comput. Appl. Math., 144, 7, (2002) · Zbl 1008.65011
[37] E.K. Ifantis and P.D. Siafarikas A differential equation for the zeros of Bessel functions, Appl. Anal.20 (1985) 269. · Zbl 0553.33004
[38] Lugo, AR, A note on the noncommutative Chern-Simons model on manifolds with boundary, Mod. Phys. Lett., A 17, 141, (2002) · Zbl 1083.81598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.