×

zbMATH — the first resource for mathematics

Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories. (English) Zbl 1342.81391
Summary: We discuss the use of gauge fields to stabilize complex structure moduli in Calabi-Yau three-fold compactifications of heterotic string and M-theory. The requirement that the gauge fields in such models preserve supersymmetry leads to a complicated landscape of vacua in complex structure moduli space. We develop methods to systematically map out this multi-branched vacuum space, in a computable and explicit manner. In analysing the resulting vacua, it is found that the associated Calabi-Yau three-folds are sometimes stabilized at a value of complex structure resulting in a singular compactification manifold. We describe how it is possible to resolve these singularities, in some cases, while maintaining computational control over the moduli stabilization mechanism. The discussion is illustrated throughout the paper with explicit worked examples.
Reviewer: Reviewer (Berlin)

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32L81 Applications of holomorphic fiber spaces to the sciences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A heterotic standard model, Phys. Lett., B 618, 252, (2005) · Zbl 1247.81349
[2] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A standard model from the E_{8} × E_{8} heterotic superstring, JHEP, 06, 039, (2005)
[3] Bouchard, V.; Donagi, R., An SU(5) heterotic standard model, Phys. Lett., B 633, 783, (2006) · Zbl 1247.81348
[4] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and A new heterotic standard model, JHEP, 02, 054, (2010) · Zbl 1270.81146
[5] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev., D 84, 106005, (2011)
[6] Braun, V.; Candelas, P.; Davies, R.; Donagi, R., The MSSM spectrum from (0,2)-deformations of the heterotic standard embedding, JHEP, 05, 127, (2012) · Zbl 1348.81435
[7] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, JHEP, 06, 113, (2012)
[8] Lukas, A.; Ovrut, BA; Stelle, K.; Waldram, D., The universe as a domain wall, Phys. Rev., D 59, 086001, (1999)
[9] Donagi, R.; He, Y-H; Ovrut, BA; Reinbacher, R., Moduli dependent spectra of heterotic compactifications, Phys. Lett., B 598, 279, (2004) · Zbl 1247.14044
[10] Donagi, R.; He, Y-H; Ovrut, BA; Reinbacher, R., The spectra of heterotic standard model vacua, JHEP, 06, 070, (2005)
[11] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., The exact MSSM spectrum from string theory, JHEP, 05, 043, (2006)
[12] Braun, V.; He, Y-H; Ovrut, BA, Yukawa couplings in heterotic standard models, JHEP, 04, 019, (2006)
[13] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., Moduli dependent μ-terms in a heterotic standard model, JHEP, 03, 006, (2006) · Zbl 1226.81169
[14] Anderson, LB; He, Y-H; Lukas, A., Heterotic compactification, an algorithmic approach, JHEP, 07, 049, (2007)
[15] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[16] Anderson, LB; Gray, J.; Ovrut, B., Yukawa textures from heterotic stability walls, JHEP, 05, 086, (2010) · Zbl 1287.81087
[17] V. Braun, Y.-H. He and B.A. Ovrut, Supersymmetric hidden sectors for heterotic standard models, arXiv:1301.6767 [INSPIRE].
[18] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string, Phys. Rev. Lett., 96, 121602, (2006)
[19] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string (II), Nucl. Phys., B 785, 149, (2007) · Zbl 1149.81344
[20] Lebedev, O.; etal., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett., B 645, 88, (2007) · Zbl 1256.81094
[21] Kim, JE; Kim, J-H; Kyae, B., Superstring standard model from Z(12-I) orbifold compactification with and without exotics and effective R-parity, JHEP, 06, 034, (2007)
[22] Lebedev, O.; etal., The heterotic road to the MSSM with R parity, Phys. Rev., D 77, 046013, (2008)
[23] Lebedev, O.; Nilles, HP; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, PK, Heterotic mini-landscape. (II). completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett., B 668, 331, (2008)
[24] Nibbelink Groot, S.; Held, J.; Ruehle, F.; Trapletti, M.; Vaudrevange, PK, Heterotic Z(6-II) MSSM orbifolds in blowup, JHEP, 03, 005, (2009)
[25] Blaszczyk, M.; etal., A Z2xz2 standard model, Phys. Lett., B 683, 340, (2010)
[26] Blaszczyk, M.; Nibbelink Groot, S.; Ruehle, F.; Trapletti, M.; Vaudrevange, PK, Heterotic MSSM on a resolved orbifold, JHEP, 09, 065, (2010) · Zbl 1291.81296
[27] Kappl, R.; etal., String-derived MSSM vacua with residual R symmetries, Nucl. Phys., B 847, 325, (2011) · Zbl 1208.81164
[28] H.P. Nilles, M. Ratz and P.K. Vaudrevange, Origin of family symmetries, arXiv:1204.2206 [INSPIRE]. · Zbl 1338.81403
[29] Groot Nibbelink, S.; Vaudrevange, PK, Schoen manifold with line bundles as resolved magnetized orbifolds, JHEP, 03, 142, (2013) · Zbl 1342.81462
[30] Bizet, NGC; Nilles, HP, Heterotic mini-landscape in blow-up, JHEP, 06, 074, (2013) · Zbl 1342.83332
[31] Assel, B.; Christodoulides, K.; Faraggi, AE; Kounnas, C.; Rizos, J., Exophobic quasi-realistic heterotic string vacua, Phys. Lett., B 683, 306, (2010)
[32] Christodoulides, K.; Faraggi, AE; Rizos, J., Top quark mass in exophobic Pati-Salam heterotic string model, Phys. Lett., B 702, 81, (2011)
[33] Cleaver, G.; etal., Investigation of quasi-realistic heterotic string models with reduced Higgs spectrum, Eur. Phys. J., C 71, 1842, (2011)
[34] Maio, M.; Schellekens, A., Permutation orbifolds of heterotic Gepner models, Nucl. Phys., B 848, 594, (2011) · Zbl 1215.81091
[35] Gato-Rivera, B.; Schellekens, A., Heterotic weight lifting, Nucl. Phys., B 828, 375, (2010) · Zbl 1203.81147
[36] Gato-Rivera, B.; Schellekens, A., Asymmetric Gepner models II. heterotic weight lifting, Nucl. Phys., B 846, 429, (2011) · Zbl 1208.81161
[37] Witten, E., New issues in manifolds of SU(3) holonomy, Nucl. Phys., B 268, 79, (1986)
[38] R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, arXiv:0904.1218 [INSPIRE]. · Zbl 1285.81070
[39] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., Stabilizing the complex structure in heterotic Calabi-Yau vacua, JHEP, 02, 088, (2011) · Zbl 1294.81153
[40] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., The Atiyah class and complex structure stabilization in heterotic Calabi-Yau compactifications, JHEP, 10, 032, (2011) · Zbl 1303.81139
[41] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., Stabilizing all geometric moduli in heterotic Calabi-Yau vacua, Phys. Rev., D 83, 106011, (2011)
[42] Atiyah, MF, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., 85, 181, (1957) · Zbl 0078.16002
[43] W. Decker and C. Lossen, Computing in Algebraic Geometry, Springer, Heidelberg Germany (2006). · Zbl 1095.14001
[44] Gianni, P.; Trager, B.; Zacharias, G., Gröbner bases and primary decomposition of polynomial ideals, J. Symb. Comput., 6, 149, (1988) · Zbl 0667.13008
[45] G.M. Greuel, G. Pfister and H. Schönemann, Singular: A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, Kaiserslautern Germany (2001). Available at http://www.singular.uni-kl.de/.
[46] Gray, J.; He, Y-H; Ilderton, A.; Lukas, A., STRINGVACUA: A Mathematica package for studying vacuum configurations in string phenomenology, Comput. Phys. Commun., 180, 107, (2009) · Zbl 1198.81156
[47] Gray, J.; He, Y-H; Ilderton, A.; Lukas, A., A new method for finding vacua in string phenomenology, JHEP, 07, 023, (2007)
[48] Gray, J.; He, Y-H; Lukas, A., Algorithmic algebraic geometry and flux vacua, JHEP, 09, 031, (2006)
[49] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002) · Zbl 1017.52007
[50] Candelas, P.; Dale, A.; Lütken, C.; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys., B 298, 493, (1988)
[51] Candelas, P.; Green, PS; Hubsch, T., Rolling among Calabi-Yau vacua, Nucl. Phys., B 330, 49, (1990) · Zbl 0985.32502
[52] Candelas, P.; Ossa, X.; He, Y-H; Szendroi, B., Triadophilia: a special corner in the landscape, Adv. Theor. Math. Phys., 12, 429, (2008) · Zbl 1144.81499
[53] Candelas, P.; Davies, R., New Calabi-Yau manifolds with small Hodge numbers, Fortsch. Phys., 58, 383, (2010) · Zbl 1194.14062
[54] Davies, R., Quotients of the conifold in compact Calabi-Yau threefolds and new topological transitions, Adv. Theor. Math. Phys., 14, 965, (2010) · Zbl 1242.14038
[55] Davies, R., Hyperconifold transitions, mirror symmetry and string theory, Nucl. Phys., B 850, 214, (2011) · Zbl 1215.81081
[56] Chuan, M-T, Existence of Hermitian-Yang-Mills metrics under conifold transitions, Commun. Anal. Geom., 20, 677, (2012) · Zbl 1266.53028
[57] Reid, M., The moduli space of 3-folds with K = 0 may nevertheless be irreducible, Math. Ann., 278, 329, (1987) · Zbl 0649.14021
[58] T. Hubsch, Calabi-Yau ManifoldsA Bestiary for Physicists, World Scientific, Singapore (1994). · Zbl 0771.53002
[59] Strominger, A., Massless black holes and conifolds in string theory, Nucl. Phys., B 451, 96, (1995) · Zbl 0925.83071
[60] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., Stability walls in heterotic theories, JHEP, 09, 026, (2009)
[61] Anderson, LB; Gray, J.; Lukas, A.; Ovrut, B., The edge of supersymmetry: stability walls in heterotic theory, Phys. Lett., B 677, 190, (2009)
[62] Schoen, C., On fiber products of rational elliptic surfaces with section, Math. Z., 197, 177, (1988) · Zbl 0631.14032
[63] L.B. Anderson, Heterotic and M-theory Compactifications for String Phenomenology, Ph.D. Thesis, University of Oxford, Oxford U.K. (2008) [arXiv:0808.3621] [INSPIRE].
[64] R. Hartshorne, Graduate Texts in Mathematics. Vol. 52: Algebraic Geometry, Springer-Verlag, Berlin Germany (1977). · Zbl 0367.14001
[65] P. Griffith and J. Harris, Principles of algebraic geometry, Wiley & Sons Inc., New York U.S.A. (1978).
[66] Green, PS; Hubsch, T.; Lütken, CA, All Hodge numbers of all complete intersection Calabi-Yau manifolds, Class. Quant. Grav., 6, 105, (1989) · Zbl 0657.53063
[67] Barton, R.; Eastwood, M., Duality in twistor string theory, Duke Math. J., 48, 177, (1981) · Zbl 0483.55004
[68] Georgi, H., Lie algebras in particle physics. from isospin to unified theories, Front. Phys., 54, 1, (1982) · Zbl 0505.00036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.