×

A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. I: Constitutive models. (English) Zbl 1341.74033

Summary: We consider a constitutive model for polycrystalline ice, which contains delayed-elastic and viscous deformations, and a damage variable. The damage variable is coupled to the delayed-elastic deformation by a fiber bundle ansatz. We construct an isotropic theory, which can be calibrated with experimental data. Furthermore, we generalize the theory to a damage model in terms of rank-four tensors. This general model allows the evolution of anisotropic damage.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
74A40 Random materials and composite materials
74A45 Theories of fracture and damage
74R05 Brittle damage
80A10 Classical and relativistic thermodynamics
80A17 Thermodynamics of continua
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chaboche, J. L.; Altenbach, H. (ed.); Skrzypek, J. J. (ed.), Thermodynamically founded CDM models for creep and other conditions, 209-283 (1999), Wien, NY · Zbl 0941.74004 · doi:10.1007/978-3-7091-2506-9_5
[2] Corless R., Gonnet G., Hare D., Jeffrey D., Knuth D.: On the Lambert W-function. Adv. Comput. Math. 5(1), 329-359 (1996) · Zbl 0863.65008 · doi:10.1007/BF02124750
[3] Duddu R., Waisman H.: A temperature dependent creep damage model for polycrystalline ice. Mech. Mater. 46, 23-41 (2012) · doi:10.1016/j.mechmat.2011.11.007
[4] Greve R.: Kontinuumsmechanik. Springer, Berlin (2003) · Zbl 1034.74001 · doi:10.1007/978-3-642-55485-8
[5] Hutter K., Jöhnk K.: Continuum Methods of Physical Modeling: Continuum Mechanics, Dimensional Analysis, Turbulence. Springer, Berlin, Germany (2004) · Zbl 1058.76001 · doi:10.1007/978-3-662-06402-3
[6] Jacka T.H.: The time and strain required for development of minimum strain rates in ice. Cold Regions Sci. Technol. 8(3), 261-268 (1984) · doi:10.1016/0165-232X(84)90057-0
[7] Kachanov, L.M.: Time of the rupture process under creep conditions (in Russian). Izv. Akad. Nauk. USSR, Otd. Tekh. Nauk., pp. 26-31 (1957)
[8] Keller, A., Hutter, K.: On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J. Mech. Phys. Solids 59(5), 1115-1120 (2011). doi:10.1016/j.jmps.2011.01.015 . http://www.sciencedirect.com/science/article/B6TXB-523CDY6-2/2/bda2f1b70e114f23d673d5cbff6f7e1d · Zbl 1270.74009
[9] Keller, A., Hutter, K.: A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part II: Thermodynamics of a rank-4 damage model. Continuum Mech. Thermodyn. doi:10.1007/s00161-014-0335-z · Zbl 1341.74034
[10] Krajcinovic D.: Damage Mechanics. North-Holland, Amsterdam (1996) · Zbl 1111.74491
[11] Kun F., Moreno Y., Hidalgo R., Herrmann H.: Creep rupture has two universality classes. EPL (Europhys. Lett.) 63, 347 (2003) · doi:10.1209/epl/i2003-00469-9
[12] Lemaitre J., Lippmann H.: A Course on Damage Mechanics, vol. 2. Springer, Berlin (1996) · Zbl 0852.73003 · doi:10.1007/978-3-642-18255-6
[13] Mahrenholtz, O., Wu, Z.: Determination of creep damage parameters for polycrystalline ice. Advances in Ice Technology (3rd Int. Conf. Ice Tech./Cambridge USA) pp. 181-192 (1992)
[14] Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials, vol. 37. North-Holland, Amsterdam (1993) · Zbl 0924.73006
[15] Pralong A., Hutter K., Funk M.: Anisotropic damage mechanics for viscoelastic ice. Contin. Mech. Thermodyn. 17(5), 387-408 (2006). doi:10.1007/s00161-005-0002-5 · Zbl 1113.74004 · doi:10.1007/s00161-005-0002-5
[16] Rist M., Murrell S.: Relationship between creep and fracture of ice. Mech. Creep-brittle Mater. 2, 355-369 (1991) · doi:10.1007/978-94-011-3688-4_30
[17] Schulson E., Duval P.: Creep and Fracture of Ice. Cambridge University Press, Cambridge (2009) · doi:10.1017/CBO9780511581397
[18] Sinha N.K.: Crack-enhanced creep in polycrystalline material: strain-rate sensitive strength and deformation of ice. J. Mater. Sci. 23(12), 4415-4428 (1988) · doi:10.1007/BF00551940
[19] Skrzypek J.J., Ganczarski A.: Modeling of Material Damage and Failure of Structures. Springer, Berlin (1999) · Zbl 0917.73003 · doi:10.1007/978-3-540-69637-7
[20] Szyszkowski W., Glockner P.: On a multiaxial constitutive law for ice. Mech. Mater. 5(1), 49-71 (1986) · doi:10.1016/0167-6636(86)90015-3
[21] Weiss J., Gay M.: Fracturing of ice under compression creep as revealed by a multifractal analysis. J. Geophys. Res. 103(B10), 24005-24 (1998)
[22] Xiao J., Jordaan I.: Application of damage mechanics to ice failure in compression. Cold Regions Sci. Technol. 24(3), 305-322 (1996) · doi:10.1016/0165-232X(95)00014-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.