# zbMATH — the first resource for mathematics

Smirnov’s fermionic observable away from criticality. (English) Zbl 1339.60136
The authors provide new proofs of two results on the 2-dimensional Ising model on the square lattice. Let $$\sigma: \mathbb{Z}^2 \cap [-n, n]^2 \to \{-1,1\}$$ be a function with $$\sigma_i \in \{-1,1\}$$, $$i \in \mathbb{Z}^2 \cap [-n, n]^2$$, where $$n$$ is a large positive integer. The spin-spin correlation function of the 2-dimensional Ising model is defined as $\langle \sigma_x \sigma_y \rangle=\frac{\sum_\sigma e^{\beta \sum_{i,j} \sigma_i \sigma_j}\sigma_x \sigma_y}{\sum_\sigma e^{\beta \sum_{i,j} \sigma_i \sigma_j}}.$ The sum over $$i, j$$ is over all nearest neighbor pairs $$i, j$$. The sum over $$\sigma$$ is over all functions $$\sigma$$. First, they compute the critical inverse temperature $$\beta_c = \frac12 \ln(1 + \sqrt{2})$$. Specifically, for $$\beta$$ below $$\beta_c$$, they show that the spin-spin correlation function decays exponentially fast as $$|x - y| \to \infty$$. For $$\beta$$ above $$\beta_c$$, they show that the spin-spin correlation function is bounded away from zero as $$|x - y| \to \infty$$. Second, they compute the exponential decay rate exactly for $$\beta$$ below $$\beta_c$$. Many years ago, Onsager and later M. Aizenman et al. [“The phase transition in a general class of Ising-type models is sharp”, J. Stat. Phys. 47, No. 3–4, 343–374 (1987; doi:10.1007/bf01007515)] computed the critical inverse temperature $$\beta_c$$. B. M. McCoy and T. T. Wu [The two-dimensional Ising model. Cambridge, MA: Havard University Press (1973; Zbl 1094.82500)] computed the exponential decay rate exactly.
In both proofs, a crucial use of S. Smirnov’s fermionic observable [Ann. Math. (2) 172, No. 2, 1435–1467 (2010; Zbl 1200.82011)] is made. Many quantities, for example, the spin-spin correlation function, can be expressed in terms of the random cluster model. A graph consisting of vertices or sites $$\mathbb{Z}^2 \cap [-n, n]^2$$ together with edges connecting nearest neighbor pairs is considered. They impose the Dobrushin boundary condition. With this boundary condition, every subgraph has a sequence of edges connecting a point on the boundary to another point on the boundary. Loosely speaking, this long sequence of edges forms an interface. A function whose domain is given by subgraphs and edges can be defined by the exponential of the purely imaginary number $$\frac{i}{2}$$ times the total angular displacement of this interface from an edge on the boundary to an edge in the interior if the interface hits that edge and zero if the interface misses the edge. This function is evaluated with respect to the probability measure defined on the set of all subgraphs, and this is Smirnov’s fermionic observable. They show that Smirnov’s fermionic observable is massive harmonic, and they relate the gap between the eigenvalue 0 and the next eigenvalue to $$\beta$$. They also prove a sort of “bosonization” result in Proposition 4.1 of their paper. One side of an equality is given in terms of the spin-spin correlation function, and the other side of the equality has the free field massive Green’s function.

##### MSC:
 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics 82B26 Phase transitions (general) in equilibrium statistical mechanics 82B43 Percolation 82B27 Critical phenomena in equilibrium statistical mechanics
Full Text:
##### References:
  Aizenman, M., Barsky, D. J. and Fernández, R. (1987). The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47 343-374. · doi:10.1007/BF01007515  Beffara, V. and Duminil-Copin, H. (2012). The self-dual point of the two-dimensional random-cluster model is critical for $$q\geq1$$. Probab. Theory Related Fields 153 511-542. · Zbl 1257.82014 · doi:10.1007/s00440-011-0353-8  Duminil-Copin, H., Hongler, C. and Nolin, P. (2012). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Comm. Pure Appl. Math. 64 1165-1198. · Zbl 1227.82015 · doi:10.1002/cpa.20370  Fortuin, C. M. and Kasteleyn, P. W. (1972). On the random-cluster model. I. Introduction and relation to other models. Physica 57 536-564. · doi:10.1016/0031-8914(72)90045-6  Graham, B. T. and Grimmett, G. R. (2006). Influence and sharp-threshold theorems for monotonic measures. Ann. Probab. 34 1726-1745. · Zbl 1115.60099 · doi:10.1214/009117906000000278  Graham, B. T. and Grimmett, G. R. (2011). Sharp thresholds for the random-cluster and Ising models. Ann. Appl. Probab. 21 240-265. · Zbl 1223.60081 · doi:10.1214/10-AAP693  Grimmett, G. (2006). The Random-Cluster Model. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 333 . Springer, Berlin. · Zbl 0858.60093  Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Z. Phys. 31 253-258.  Kaufman, B. and Onsager, L. (1950). Crystal statistics. IV. Long-range order in a binary crystal. Unpublished manuscript. · Zbl 0035.42802  Kramers, H. A. and Wannier, G. H. (1941). Statistics of the two-dimensional ferromagnet. I. Phys. Rev. (2) 60 252-262. · JFM 67.0964.01 · doi:10.1103/PhysRev.60.252  Lenz, W. (1920). Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Zeitschr. 21 613-615.  McCoy, B. M. and Wu, T. T. (1973). The Two-Dimensional Ising Model . Harvard Univ. Press, Cambridge, MA. · Zbl 1094.82500  Messikh, R. J. (2006). The surface tension near criticality of the 2d-Ising model. Preprint. Available at . · arxiv.org  Peierls, R. (1936). On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32 477-481. · Zbl 0014.33604  Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 1435-1467. · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441 · pjm.math.berkeley.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.