zbMATH — the first resource for mathematics

On irreducible divisors of iterated polynomials. (English) Zbl 1339.11099
Summary: D. Gómez-Pérez et al. [Rev. Mat. Iberoam. 30, No. 2, 523–535 (2014; Zbl 1319.11089)] have recently shown that for almost all polynomials \(f \in \mathbb F_q[X]\) over the finite field of \(q\) elements, where \(q\) is an odd prime power, their iterates eventually become reducible polynomials over \(\mathbb F_q\). Here we combine their method with some new ideas to derive finer results about the arithmetic structure of iterates of \(f\). In particular, we prove that the \(n\)th iterate of \(f\) has a square-free divisor of degree of order at least \(n^{1+o(1)}\) as \(n\to \infty\) (uniformly in \(q\)).

11T06 Polynomials over finite fields
11L40 Estimates on character sums
11T24 Other character sums and Gauss sums
11P99 Additive number theory; partitions
Full Text: DOI
[1] Ali, N.: Stabilité des polyn\hat omes. Acta Arith. 119 (2005), no. 1, 53-63. · Zbl 1088.11078
[2] Ayad, M. and McQuillan, D. L.: Irreducibility of the iterates of a quadratic polynomial over a field. Acta Arith. 93 (2000), no. 1, 87-97. Corrigendum: Acta Arith. 99 (2001), no. 1, 97. · Zbl 0945.11020 · eudml:207402
[3] Dalen, K.: On a theorem of Stickelberger. Math. Scand. 3 (1955), 124-126. · Zbl 0068.03102 · eudml:165575
[4] Faber, X. and Granville, A.: Prime factors of dynamical sequences. J. Reine Angew. Math. 661 (2011), 189-214. · Zbl 1290.11019 · doi:10.1515/CRELLE.2011.081 · arxiv:0903.1344
[5] Fuchs, C. and Zannier, U.: Composite rational functions expressible with few terms. J. Eur. Math. Soc. 14 (2012), no. 1, 175-208. · Zbl 1244.12001 · doi:10.4171/JEMS/299
[6] von zur Gathen, J. and Gerhard, J.: Modern computer algebra. Cambridge University Press, New York, 1999. · Zbl 0936.11069
[7] Gómez-Pérez, D. and Nicolás, A. P.: An estimate on the number of stable quadratic polynomials. Finite Fields Appl. 16 (2010), no. 6, 401-405. · Zbl 1222.11143 · doi:10.1016/j.ffa.2010.06.005
[8] Gómez-Pérez, D., Nicolás, A. P., Ostafe, A. and Sadornil, D.: Stable poly- nomials over finite fields. Rev. Mat. Iberoam. 30 (2014), no. 2, 523-535. · Zbl 1319.11089 · doi:10.4171/RMI/791
[9] Iwaniec, H. and Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications 53, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1059.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.