×

zbMATH — the first resource for mathematics

Discrete-time dynamics of a system with crowding effect and predator partially dependent on prey. (English) Zbl 1338.92100
Summary: In the present study, the stability and bifurcation analysis of discrete-time predator-prey system with predator partially dependent on prey and crowding effect of predator is examined. Global stability of the system at the fixed points has been discussed. The specific conditions for existence of flip bifurcation and Hopf bifurcation in the interior of \(\mathbb R_+^2\) have been derived by using a center manifold theorem and bifurcation theory. Numerical simulations have been carried out to show the complex dynamical behavior of the system and to justify our analytic results. In case of flip bifurcation, numerical simulations presented cascade of period-doubling bifurcation in the orbits of period 2, 4, 8, chaotic orbits and stable window of period 9 orbit; whereas in case of Hopf bifurcation, smooth invariant circle bifurcates from the fixed point. The complexity of dynamical behavior is confirmed by computation of Lyapunov exponents.

MSC:
92D25 Population dynamics (general)
37N25 Dynamical systems in biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 5, 1530-1535, (1992)
[2] Dhar, J., A prey-predator model with diffusion and a supplementary resource for the prey in a two-patch environment 1, Math. Model. Anal., 9, 1, 9-24, (2004) · Zbl 1071.92039
[3] Dhar, J.; Jatav, K. S., Mathematical analysis of a delayed stage-structured predator-prey model with impulsive diffusion between two predators territories, Ecol. Complexity, 16, 59-67, (2013)
[4] Dubey, B., A prey-predator model with a reserved area, Nonlinear Anal. Model. Control, 12, 4, 479-494, (2007) · Zbl 1206.49043
[5] H. Freedman, Deterministic mathematical models in population ecology, HIFR Consulting Ltd, Edmonton, Alberta, Canada, 1980. · Zbl 0448.92023
[6] Jeschke, J. M.; Kopp, M.; Tollrian, R., Predator functional responses: discriminating between handling and digesting prey, Ecol. Monographs, 72, 1, 95-112, (2002)
[7] Kooij, R. E.; Zegeling, A., A predator-prey model with ivlev’s functional response, J. Math. Anal. Appl., 198, 2, 473-489, (1996) · Zbl 0851.34030
[8] A.J. Lotka, Elements of physical biology. · JFM 51.0416.06
[9] Ma, W.; Takeuchi, Y., Stability analysis on a predator-prey system with distributed delays, J. Comput. Appl. Math., 88, 1, 79-94, (1998) · Zbl 0897.34062
[10] May, R. M., Stability and Complexity in Model Ecosystems, vol. 6, (2001), Princeton University Press
[11] Sen, M.; Banerjee, M.; Morozov, A., Bifurcation analysis of a ratio-dependent prey-predator model with the allee effect, Ecol. Complexity, 11, 12-27, (2012)
[12] Sinha, S.; Misra, O.; Dhar, J., Modelling a predator-prey system with infected prey in polluted environment, Appl. Math. Model., 34, 7, 1861-1872, (2010) · Zbl 1193.34071
[13] Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature, 118, 558-560, (1926) · JFM 52.0453.03
[14] Dubey, B.; Das, B.; Hussain, J., A predator-prey interaction model with self and cross-diffusion, Ecol. Model., 141, 1, 67-76, (2001)
[15] Sun, G.-Q.; Jin, Z.; Liu, Q.-X.; Li, L., Dynamical complexity of a spatial predator-prey model with migration, Ecol. Model., 219, 1, 248-255, (2008)
[16] Sun, G.-Q.; Jin, Z.; Li, L.; Haque, M.; Li, B.-L., Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dyn., 69, 4, 1631-1638, (2012) · Zbl 1263.34062
[17] Sun, G.-Q.; Zhang, J.; Song, L.-P.; Jin, Z.; Li, B.-L., Pattern formation of a spatial predator-prey system, Appl. Math. Comput., 218, 22, 11151-11162, (2012) · Zbl 1278.92041
[18] Agarwal, R. P., Difference equations and inequalities: theory, methods, and applications, (2000), CRC Press · Zbl 0952.39001
[19] Agarwal, R. P.; Wong, P. J., Advanced topics in difference equations, (1997), Springer · Zbl 0878.39001
[20] Celik, C.; Duman, O., Allee effect in a discrete-time predator-prey system, Chaos Solitons Fract., 40, 4, 1956-1962, (2009) · Zbl 1198.34084
[21] Gopalsamy, K., Stability and oscillations in delay differential equations of population dynamics, (1992), Springer · Zbl 0752.34039
[22] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42, (1983), Springer Verlag New York · Zbl 0515.34001
[23] Huo, H.-F.; Li, W.-T., Existence and global stability of periodic solutions of a discrete predator-prey system with delays, Appl. Math. Comput., 153, 2, 337-351, (2004) · Zbl 1043.92038
[24] Liao, X.; Zhou, S.; Ouyang, Z., On a stoichiometric two predators on one prey discrete model, Appl. Math. Lett., 20, 3, 272-278, (2007) · Zbl 1119.39008
[25] Liu, X., A note on the existence of periodic solutions in discrete predator-prey models, Appl. Math. Model., 34, 9, 2477-2483, (2010) · Zbl 1195.39004
[26] Martelli, M., Introduction to Discrete Dynamical Systems and Chaos, vol. 53, (2011), John Wiley & Sons
[27] J.D. Murray, Mathematical Biology I: An Introduction, Interdisciplinary applied mathematics, vol. 17, 2002. · Zbl 1006.92001
[28] Robinson, C., Dynamical systems: stability, symbolic dynamics, and chaos, (1998), CRC Press
[29] Cushing, J.; Levarge, S.; Chitnis, N.; Henson, S. M., Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10, 13-15, 1139-1151, (2004) · Zbl 1071.39005
[30] Sun, G.-Q.; Zhang, G.; Jin, Z., Dynamic behavior of a discrete modified ricker & beverton-Holt model, Comput. Math. Appl., 57, 8, 1400-1412, (2009) · Zbl 1186.34074
[31] Eskola, H. T.; Geritz, S. A., On the mechanistic derivation of various discrete-time population models, Bull. Math. Biol., 69, 1, 329-346, (2007) · Zbl 1133.92355
[32] Li, L.; Zhang, G.; Sun, G.-Q.; Wang, Z.-J., Existence of periodic positive solutions for a competitive system with two parameters, J. Difference Equ. Appl., 20, 3, 341-353, (2014) · Zbl 1319.92044
[33] Chen, F., Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems, Appl. Math. Comput., 182, 1, 3-12, (2006) · Zbl 1113.92061
[34] Fan, Y.-H.; Li, W.-T., Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, J. Math. Anal. Appl., 299, 2, 357-374, (2004) · Zbl 1063.39013
[35] Liu, X.; Xiao, D., Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fract., 32, 1, 80-94, (2007) · Zbl 1130.92056
[36] Chen, Y.; Changming, S., Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay, Chaos Solitons Fract, 38, 4, 1104-1114, (2008) · Zbl 1152.34370
[37] Gakkhar, S.; Singh, A., Complex dynamics in a prey predator system with multiple delays, Commun. Nonlinear Sci. Numer. Simul., 17, 2, 914-929, (2012) · Zbl 1243.92051
[38] He, Z.; Lai, X., Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Anal.: Real World Appl., 12, 1, 403-417, (2011) · Zbl 1202.93038
[39] Hu, Z.; Teng, Z.; Zhang, L., Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal.: Real World Appl., 12, 4, 2356-2377, (2011) · Zbl 1215.92063
[40] Jing, Z.; Yang, J., Bifurcation and chaos in discrete-time predator-prey system, Chaos Solitons Fract., 27, 1, 259-277, (2006) · Zbl 1085.92045
[41] Wang, W.-X.; Zhang, Y.-B.; Liu, C.-Z., Analysis of a discrete-time predator-prey system with allee effect, Ecol. Complexity, 8, 1, 81-85, (2011)
[42] Zhang, C.-H.; Yan, X.-P.; Cui, G.-H., Hopf bifurcations in a predator-prey system with a discrete delay and a distributed delay, Nonlinear Anal.: Real World Appl., 11, 5, 4141-4153, (2010) · Zbl 1206.34104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.