Exit identities for Lévy processes observed at Poisson arrival times. (English) Zbl 1338.60125

Summary: For a spectrally one-sided Lévy process, we extend various two-sided exit identities to the situation when the process is only observed at arrival epochs of an independent Poisson process. In addition, we consider exit problems of this type for processes reflected either from above or from below. The resulting Laplace transforms of the main quantities of interest are in terms of scale functions and turn out to be simple analogues of the classical formulas.


60G51 Processes with independent increments; Lévy processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI arXiv Euclid


[1] Albrecher, H., Cheung, E.C.K. and Thonhauser, S. (2011). Randomized observation periods for the compound Poisson risk model dividends. Astin Bull. 41 645-672. · Zbl 1239.91072
[2] Albrecher, H., Cheung, E.C.K. and Thonhauser, S. (2013). Randomized observation periods for the compound Poisson risk model: The discounted penalty function. Scand. Actuar. J. 6 424-452. · Zbl 1401.91089
[3] Albrecher, H., Gerber, H.U. and Shiu, E.S.W. (2011). The optimal dividend barrier in the Gamma-Omega model. Eur. Actuar. J. 1 43-55. · Zbl 1219.91062
[4] Albrecher, H. and Ivanovs, J. (2013). A risk model with an observer in a Markov environment. Risks 1 148-161. · Zbl 1300.60067
[5] Albrecher, H. and Ivanovs, J. (2014). Power identities for Lévy risk models under taxation and capital injections. Stoch. Syst. 4 157-172. · Zbl 1300.60067
[6] Albrecher, H. and Lautscham, V. (2013). From ruin to bankruptcy for compound Poisson surplus processes. Astin Bull. 43 213-243. · Zbl 1283.91084
[7] Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities , 2nd ed. Advanced Series on Statistical Science & Applied Probability 14 . Hackensack, NJ: World Scientific. · Zbl 1247.91080
[8] Avanzi, B., Cheung, E.C.K., Wong, B. and Woo, J.-K. (2013). On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency. Insurance Math. Econom. 52 98-113. · Zbl 1291.91088
[9] Avram, F., Kyprianou, A.E. and Pistorius, M.R. (2004). Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Probab. 14 215-238. · Zbl 1042.60023
[10] Bekker, R., Boxma, O.J. and Resing, J.A.C. (2009). Lévy processes with adaptable exponent. Adv. in Appl. Probab. 41 177-205. · Zbl 1169.60022
[11] Bertoin, J. (1997). Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann. Appl. Probab. 7 156-169. · Zbl 0880.60077
[12] Doney, R.A. and Kyprianou, A.E. (2006). Overshoots and undershoots of Lévy processes. Ann. Appl. Probab. 16 91-106. · Zbl 1101.60029
[13] Gerber, H.U. and Shiu, E.S.W. (1998). On the time value of ruin. N. Am. Actuar. J. 2 48-78. · Zbl 1081.60550
[14] Ivanovs, J. (2013). A note on killing with applications in risk theory. Insurance Math. Econom. 52 29-34. · Zbl 1291.91114
[15] Ivanovs, J. and Palmowski, Z. (2012). Occupation densities in solving exit problems for Markov additive processes and their reflections. Stochastic Process. Appl. 122 3342-3360. · Zbl 1267.60087
[16] Kuznetsov, A., Kyprianou, A.E., Pardo, J.C. and van Schaik, K. (2011). A Wiener-Hopf Monte Carlo simulation technique for Lévy processes. Ann. Appl. Probab. 21 2171-2190. · Zbl 1245.65005
[17] Kyprianou, A.E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext . Berlin: Springer. · Zbl 1104.60001
[18] Landriault, D., Renaud, J.-F. and Zhou, X. (2011). Occupation times of spectrally negative Lévy processes with applications. Stochastic Process. Appl. 121 2629-2641. · Zbl 1227.60061
[19] Loeffen, R.L., Renaud, J.-F. and Zhou, X. (2014). Occupation times of intervals until first passage times for spectrally negative Lévy processes. Stochastic Process. Appl. 124 1408-1435. · Zbl 1287.60062
[20] Nakagawa, T. (2006). Maintenance Theory of Reliability . Berlin: Springer.
[21] Renaud, J.-F. and Zhou, X. (2007). Distribution of the present value of dividend payments in a Lévy risk model. J. Appl. Probab. 44 420-427. · Zbl 1132.60041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.