×

New hyperbolic function solutions for some nonlinear partial differential equation arising in mathematical physics. (English) Zbl 1338.35089


MSC:

35C05 Solutions to PDEs in closed form
35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, Trial Equation Method and its Applications to Nonlinear Evolution Equations, Acta Phys. Sin. 54 pp 2505– (2005) · Zbl 1202.35059
[2] Liu, A New Trial Equation Method its Applications, Communications in Theoretical Physics, Commun. Theor. Phys. 45 pp 395– (2006) · doi:10.1088/0253-6102/45/3/003
[3] Liu, Trial Equation Method for Nonlinear Evolution Equations with Rank Inhomogeneous: Mathematical Discussions and Applications, Commun. Theor. Phys. 45 pp 219– (2006) · doi:10.1088/0253-6102/45/2/005
[4] Bulut, The Modified Trial Equation Method for Fractional Wave Equation and Time-Fractional Generalized Burgers Equation, Abstr. Appl. Anal. 2013 pp 636802– (2013) · doi:10.1155/2013/636802
[5] Zayed, Exact Solutions for the Nonlinear Schrödinger Equation with Variable Coefficients Using the Generalized Extended Tanh-Function, the Sine-Cosine and the Exp-function Methods, Appl. Math. Comput. 218 pp 2259– (2011) · Zbl 1229.35278 · doi:10.1016/j.amc.2011.07.043
[6] Wazwaz, The Tanh Method: Solitons and Periodic Solutions for Dodd–Bullough–Mikhailov and Tzitzeica–Dodd–Bullough Equations, Chaos Solitons Fractals 25 pp 55– (2005) · Zbl 1070.35076 · doi:10.1016/j.chaos.2004.09.122
[7] Khan, Traveling Wave Solutions of the (2 + 1)-Dimensional Zoomeron Equation and the Burgers Equations via the MSE Method and the Exp-function Method, Ain Shams Eng. J. 5 pp 247– (2014) · doi:10.1016/j.asej.2013.07.007
[8] Ma, A Transformed Rational Function Method and Exact Solutions to the 3 + 1 Dimensional Jimbo–Miwa Equation, Chaos Solitons Fractals 42 pp 1356– (2009) · Zbl 1198.35231 · doi:10.1016/j.chaos.2009.03.043
[9] Ma, A Multiple Exp-function Method for Nonlinear Differential Equations and its Application, Phys. Scr. 82 pp 065003– (2010) · Zbl 1219.35209 · doi:10.1088/0031-8949/82/06/065003
[10] Ma, Solving the (3+1)-Dimensional Generalized KP and BKP Equations by the Multiple Exp-function Algorithm, Appl. Math. Comput. 218 pp 11871– (2012) · Zbl 1280.35122 · doi:10.1016/j.amc.2012.05.049
[11] Ma, Generalized Bilinear Differential Equations, Stud. Nonlinear Sci. 2 pp 140– (2011)
[12] Ma, Explicit and Exact Solutions to a Kolmogorov–Petrovskii–Piskunov Equation, Int. J. Nonlinear Mech. 31 pp 329– (1996) · Zbl 0863.35106 · doi:10.1016/0020-7462(95)00064-X
[13] Ma, Partial Differential Equations Possessing Frobenius Integrable Decompositions, Phys. Lett. A 364 pp 29– (2007) · Zbl 1203.35059 · doi:10.1016/j.physleta.2006.11.048
[14] DOI: 10.1186/2193-1801-3-724 · doi:10.1186/2193-1801-3-724
[15] Khan, Exact Solutions of the (2+1)-Dimensional Cubic Klein–Gordon Equation and the (3+1)-Dimensional Zakharov–Kuznetsov Equation Using the Modified Simple Equation Method, J. Assn. Arab Univ. Basic Appl. Sci. 15 pp 74– (2014)
[16] Benjamin–Bona–Mahony Equationhttp://en.wikipedia.org/wiki/Benjamin
[17] Yusufoglu, New Solitary Solutions for the MBBM Equations Using Exp-function Method, Phys. Lett. 372 pp 442– (2008) · Zbl 1217.35156 · doi:10.1016/j.physleta.2007.07.062
[18] Eme, Applications of an Extended (G’/G)-Expansion Method to Find Exact Solutions of Nonlinear PDEs in Mathematical Physics, Math. Probl. Eng. 2010 pp 768573– (2010)
[19] https://en.wikipedia.org/wiki/Klein
[20] https://math.berkeley.edu/ evans/entropy.and.PDE.pdf
[21] http://www.asc.tuwien.ac.at/ juengel/scripts/Bielefeld1203.pdf
[22] Parsani, Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier–Stokes Equations, J. Comput. Phys. 292 pp 88– (2015) · Zbl 1349.76639 · doi:10.1016/j.jcp.2015.03.026
[23] Zhao, Crowd Macro State Detection Using Entropy Model, Physica A 431 pp 84– (2015) · doi:10.1016/j.physa.2015.02.068
[24] Elling, Relative Entropy and Compressible Potential Flow, Acta. Math. Sci. 35 pp 763– (2015) · Zbl 1340.35203 · doi:10.1016/S0252-9602(15)30020-5
[25] Chen, Analysis of Entropy Generation in Double-Diffusive Natural Convection of Nano fluid, Int. J. Heat Mass Tran. 87 pp 447– (2015) · doi:10.1016/j.ijheatmasstransfer.2015.04.023
[26] Lv, Entropy-Bounded Discontinuous Galerkin Scheme for Euler Equations, J. Comput. Phys. 295 pp 715– (2015) · Zbl 1349.65465 · doi:10.1016/j.jcp.2015.04.026
[27] Broadbridge, Entropy Diagnostics for Fourth Order Partial Differential Equations in Conservation Form, Entropy 10 pp 365– (2008) · Zbl 1179.35164 · doi:10.3390/e10030365
[28] Kudryashov, One Method for Finding Exact Solutions of Nonlinear Differential Equations, Commun. Nonlinear Sci. Numer. Simul. 17 pp 2248– (2012) · Zbl 1250.35055 · doi:10.1016/j.cnsns.2011.10.016
[29] Lee, Exact Travelling Wave Solutions for some Important Nonlinear Physical Models, Pramana 80 pp 757– (2013) · doi:10.1007/s12043-013-0520-9
[30] Ryabov, Application of the Kudryashov Method for Finding Exact Solutions of the High Order Nonlinear Evolution Equations, Appl. Math. Comput. 218 pp 3965– (2011) · Zbl 1246.35015 · doi:10.1016/j.amc.2011.09.027
[31] Demiray, Generalized Kudryashov Method for Time-Fractional Differential Equations, Abstr. Appl. Anal. 2014 pp 901540– (2014)
[33] Baxley, Existence Theorems for Nonlinear Second Order Boundary Value Problems, J. Differ. Equ. 85 pp 125– (1990) · Zbl 0704.34021 · doi:10.1016/0022-0396(90)90092-4
[34] Olver, Euler Operators Conservation Laws of the BBM Equation, Math. Proc. Camb. Phil. Soc. 85 pp 143– (1979) · Zbl 0387.35050 · doi:10.1017/S0305004100055572
[35] Johnson, On the Stability of Periodic Solutions of the Generalized Benjamin–Bona–Mahony Equation, Physica D 239 pp 1892– (2010) · Zbl 1204.37075 · doi:10.1016/j.physd.2010.06.011
[36] Zeng, Existence and Stability of Solitary-Wave Solutions of Equations of Benjamin–Bona–Mahony Type, J. Differ. Equ. 188 pp 1– (2003) · Zbl 1146.35409 · doi:10.1016/S0022-0396(02)00061-X
[37] Medeiros, Existence and Uniqueness for Periodic Solutions of the Benjamin–Bona–Mahony Equation, SIAM J. Math. Anal. 8 pp 792– (1977) · Zbl 0337.35004 · doi:10.1137/0508062
[38] Moriyama, Normal Forms and Global Existence of Solutions to a Class of Cubic Nonlinear Klein–Gordon Equations in one Space Dimension, Differ. Integr. Equ. 10 pp 499– (1997) · Zbl 0892.35136
[39] Selberg, Unconditional Uniqueness in the Charge Class for the Dirac–Klein–Gordon Equations in two Space Dimensions, Nonlinear Differ. Equ. Appl. 20 pp 1055– (2013) · Zbl 1268.35101 · doi:10.1007/s00030-012-0196-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.