×

Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude. (English) Zbl 1337.92072

Summary: In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise.

MSC:

92C40 Biochemistry, molecular biology
92C42 Systems biology, networks

Software:

UniProt
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abril, A. M.; Salas, M.; Andreu, J. M.; Hermoso, J. M.; Rivas, G., Phage Ø29 Protein p6 is in a monomer−dimer equilibrium that shifts to higher association states at the millimolar concentrations found in vivo, Biochemistry, 36, 11901-11908 (1997)
[2] Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O´Donovan, C., Redaschi, N., Yeh, L.S.L., 2004. Uniprot: the universal protein knowledgebase. Nucleic Acids Res. 32, D115-D119, ID:Q9H0H5. 〈http://www.uniprot.org/uniprot/P03963 http://www.uniprot.org/uniprot/P28819〉; Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O´Donovan, C., Redaschi, N., Yeh, L.S.L., 2004. Uniprot: the universal protein knowledgebase. Nucleic Acids Res. 32, D115-D119, ID:Q9H0H5. 〈http://www.uniprot.org/uniprot/P03963 http://www.uniprot.org/uniprot/P28819〉
[3] Barlati, S., DNA replication during development of competence in Bacillus subtilis, Mol. Gen. Genet., 118, 327-333 (1972)
[4] Baumann, C.; Otridge, J.; Gollnick, P., Kinetic and thermodynamic analysis of the interaction between TRAP (trp RNA-binding Attenuation Protein) of Bacillus subtilis and trp leader RNA, J. Biol. Chem., 271, 12269-12274 (1996)
[5] Becskei, A.; Serrano, L., Engineering stability in gene networks by auto regulation, Nature, 405, 590-593 (2000)
[6] Bhartiya, S.; Chaudhray, N.; Venkatesh, K. V.; Doyle, F. J., Multiple feedback loop design in the tryptophan regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series, J. R. Soc. Interface, 3, 383-391 (2006)
[7] Bliss, R. D., A specific method for determination of free tryptophan and endogenous tryptophan in Escherichia coli, Anal. Biochem., 93, 390-398 (1979)
[8] Bliss, R. D.; Painter, P. R.; Marr, A. G., Role of feedback inhibition in stabilizing the classical operon, J. Theor. Biol., 97, 177-193 (1982)
[9] Bremmer, H.; Dennis, P. P., Modulation of chemical composition and other parameters of the cell by growth rate, (Neidhart, F. C.; Curtis, R.; Ingraham, J. L.; Lin, E. C.C.; Low, K. B.; Magasanik, B.; Reznikoff, W. S.; Riley, M.; Schaechter, M.; Umbarger, H. E., Escherichia coli and Salmonella thyphymurium: Cellular and Molecular Biology, 2 (1996), American Society of Microbiology: American Society of Microbiology Washington, DC), 1553-1569
[10] Burdett, I. D.J.; Kirkwood, T. B.L.; Whalley, J. B., Growth kinetics of individual Bacillus subtilis cells and correlation with nucleoid extension, J. Bacteriol., 167, 219-230 (1986)
[11] Caligiuri, M. G.; Bauerle, R., Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium, J. Biol. Chem., 266, 8328-8335 (1991)
[12] Cao, Y.; Gillespie, D.; Petzold, L., Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems, J. Comput. Phys., 206, 395-411 (2005) · Zbl 1088.80004
[13] Chen, G.; Yanofsky, C., Tandem transcription and translation regulatory sensing of uncharged tryptophan tRNA, Science, 301, 211-213 (2003)
[14] Chen, Y.; Gollnick, P., Alanine scanning mutagenesis of Anti-TRAP (AT) reveals residues involved in binding to TRAP, J. Mol. Biol., 377, 1529-1543 (2008)
[15] Conrad, E.D., Tyson, J.J., 2006. Modeling molecular interaction Networks with nonlinear ordinary differential equations. In: Szallasi, Z., Stelling, J., Periwal, V. (Eds.), System Modeling in Cellular Biology: From concepts to Nuts and Bolts, London, England, pp. 97-123.; Conrad, E.D., Tyson, J.J., 2006. Modeling molecular interaction Networks with nonlinear ordinary differential equations. In: Szallasi, Z., Stelling, J., Periwal, V. (Eds.), System Modeling in Cellular Biology: From concepts to Nuts and Bolts, London, England, pp. 97-123.
[16] Draper, D. E., Translational initiation, (Neidhart, F. C.; Curtis, R.; Ingraham, J. L.; Lin, E. C.C.; Low, K. B.; Magasanik, B.; Reznikoff, W. S.; Riley, M.; Schaechter, M.; Umbarger, H. E., Escherichia coli and Salmonella thyphymurium: Cellular and Molecular Biology, 1 (1996), American Society of Microbiology: American Society of Microbiology Washington, DC), 849-860
[17] Dublanche, Y.; Michalodimitrakis, K.; Kummerer, N.; Foglierini, M.; Serrano, L., Noise in transcription negative feedback loops: simulation and experimental analysis, Mol. Syst. Biol., 2, 1-12 (2006)
[18] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340-2361 (1997)
[19] Gollnick, P.; Babitzke, P.; Antson, A.; Yanofsky, C., Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis, Annu. Rev. Genet., 39, 47-68 (2005)
[20] Haseltine, E. L.; Rawlings, J. B., Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117, 6959-6969 (2002)
[21] Hernández-Valdéz, A.; Santillán, M.; Zeron, E. S., Cycling expression and cooperative operator interaction in the trp operon of Escherichia coli, J. Theor. Biol., 263, 340-352 (2010) · Zbl 1406.92243
[22] Kaern, M.; Elston, T. C.; Blake, W. J.; Collins, J. J., Stochasticity in gene expression: from theories to phenotypes, Nat. Rev. Genet., 6, 451-464 (2005)
[23] McCabe, B. C.; Gollnick, P., Cellular levels of trp RNA-binding attenuation protein in Bacillus subtilis, J. Bacteriol., 186, 5157-5159 (2004)
[24] Müller, H. E., Age and evolution of bacteria, Cell. Mol. Life Sci., 33, 979-984 (1977)
[25] Nguyen, L. K.; Kulasiri, D., Distinct noise-controlling roles of multiple negative feedback mechanisms in a prokaryotic operon system, IET Syst. Biol., 5, 145-156 (2011)
[26] Peterson, J. D.; Umayam, L. A.; Dickinson, T. M.; Hickey, E. K.; White, O., The comprehensive microbial resource, Nucleic Acids Res., 29, 123-125 (2001), (accessed 15 June 2011)
[27] Praetorius-Ibba, M.; Stange-Thomann, N.; Kitabatake, M.; Ali, K.; Söll, I.; Carter, C. W.; Ibba, M.; Söll, D., Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding, Biochemistry, 39, 13136-13143 (2000)
[28] Raser, J. M.; O´Shea, E. K., Noise in gene expression: origins, consequences, and control, Science, 309, 2010-2013 (2005)
[29] Santillán, M., On the use of the Hill functions in mathematical models of gene regulatory networks, Math. Model. Nat. Phenom., 3, 85-97 (2008) · Zbl 1337.92082
[30] Santillán, M.; Zeron, E. S., Dynamic influence of feedback enzyme inhibition and transcription attenuation on the tryptophan operon response to nutritional shifts, J. Theor. Biol., 231, 287-298 (2004) · Zbl 1447.92151
[31] Sauer, U.; Hatzimanikatis, V.; Hohmann, H. P.; Manneberg, M.; van Loon, A. P.; Bailey, J. E., Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis, Appl. Environ. Microbiol., 62, 3687-3696 (1996)
[32] Shahrezaei, V.; Swain, P. S., Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105, 17256-17261 (2008)
[33] Shevtsov, M. B.; Chen, Y.; Gollnick, P.; Antson, A. A., Crystal structure of Bacillus subtilis anti-TRAP protein, an antagonist of TRAP/RNA interaction, Proc. Natl. Acad. Sci., 102, 17600-17605 (2005)
[34] Sinha, S., Theoretical study of tryptophan operon: applications in microbial technology, Biotechnol. Bioeng., 31, 117-124 (1988)
[35] Sonenshein, A. L.; Hoch, J. A.; Losick, R., Bacillus subtilis and Its Closest Relatives (2002), ASM Press
[36] Stofer, E.; Chipot, C.; Lavery, R., Free energy calculations of Watson-Crick base pairing in aqueous solution, J. Am. Chem. Soc., 121, 9503-9508 (1999)
[37] Sundararaj, S.; Guo, A.; Habibi-Nazhad, B.; Rouani, M.; Stothard, P.; Ellison M, M.; David, S.; Wishart, D. S., The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli, Nucleic Acids Res., 32, D293-D295 (2003), (accessed 14 June 2011)
[38] Thattai, M.; Oudenaarden, A. V., Intrinsic noise in gene regulatory networks, PNAS, 98, 8614-8619 (2001)
[39] Valbuzzi, A.; Yanofsky, C., Inhibition of the B. subtilis regulatory protein TRAP by the TRAP-Inhibitory protein, AT,, Science, 293, 2057-2059 (2001)
[40] Xie, G.; Keyhani, N. O.; Bonner, C. A.; Jensen, R. A., Ancient origin of the tryptophan operon and the dynamics of evolutionary change, Microbiol. Mol. Biol. Rev., 67, 303-342 (2003)
[41] Yakhnin, H.; Babiarz, J. E.; Yakhnin, A. V.; Babitzke, P., Expression of the Bacillus subtilis trpEDCFBA Operon is influenced by translational coupling and Rho termination factor, J. Bacteriol., 183, 5918-5926 (2001)
[42] Yang, W. J.; Yanofsky, C., Effects of tryptophan starvation on levels of the trp RNA-binding attenuation protein (TRAP) and Anti-TRAP regulatory protein and their influence on trp operon expression in Bacillus subtilis, J. Bacteriol., 187, 1884-1891 (2005)
[43] Yanofsky, C., The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis, Trends Genet., 20, 367-374 (2004)
[44] Yanofsky, C., RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria, RNA, 13, 1141-1154 (2007)
[45] Zeron, E. S.; Santillán, M., Distributions for negative-feedback-regulated stochastic gene expression: dimension reduction and numerical solution of the chemical master equation, J. Theor. Biol., 264, 377-385 (2010) · Zbl 1406.92227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.