×

Modelling the movement of interacting cell populations: a moment dynamics approach. (English) Zbl 1337.92028

Summary: Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C37 Cell biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baker, R. E.; Simpson, M. J., Correcting mean-field approximations for birth-death-movement processes, Phys. Rev. E, 82, 4, 041905 (2010)
[2] Beets-Tan, R.; Beets, G.; Vliegen, R.; Kessels, A.; Van Boven, H.; De Bruine, A.; Von Meyenfeldt, M.; Baeten, C.; Van Engelshoven, J., Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery, The Lancet, 357, 9255, 497-504 (2001)
[3] Bhowmick, N. A.; Moses, H. L., Tumor-stroma interactions, Curr. Opin. Genet. Dev., 15, 1, 97-101 (2005)
[4] Binder, B. J.; Landman, K. A., Exclusion processes on a growing domain, J. Theor. Biol., 259, 3, 541-551 (2009) · Zbl 1402.92051
[5] Chowdhury, D.; Schadschneider, A.; Nishinari, K., Physics of transport and traffic phenomena in biologyfrom molecular motors and cells to organisms, Phys. Life Rev., 2, 4, 318-352 (2005)
[6] Codling, E. A.; Plank, M. J.; Benhamou, S., Random walk models in biology, J. R. Soc. Interface, 5, 25, 813-834 (2008)
[7] De Wever, O.; Mareel, M., Role of tissue stroma in cancer cell invasion, J. Pathol., 200, 4, 429-447 (2003)
[8] Fernando, A. E.; Landman, K. A.; Simpson, M. J., Nonlinear diffusion and exclusion processes with contact interactions, Phys. Rev. E, 81, 1, 011903 (2010)
[9] Gatenby, R. A.; Gawlinski, E. T., A reaction-diffusion model of cancer invasion, Cancer Res., 56, 24, 5745-5753 (1996)
[10] Gatenby, R. A.; Gawlinski, E. T.; Gmitro, A. F.; Kaylor, B.; Gillies, R. J., Acid-mediated tumor invasiona multidisciplinary study, Cancer Res., 66, 10, 5216-5223 (2006)
[11] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (1977)
[12] Grima, R., Multiscale modeling of biological pattern formation, Curr. Top. Dev. Biol., 81, 435-460 (2008)
[13] Hastings, A.; Cuddington, K.; Davies, K. F.; Dugaw, C. J.; Elmendorf, S.; Freestone, A.; Harrison, S.; Holland, M.; Lambrinos, J.; Malvadkar, U., The spatial spread of invasionsnew developments in theory and evidence, Ecol. Lett., 8, 1, 91-101 (2005)
[14] Johnston, S. T.; Simpson, M. J.; Baker, R. E., Mean-field descriptions of collective migration with strong adhesion, Phys. Rev. E, 85, 5, 051922 (2012)
[15] Khain, E.; Katakowski, M.; Charteris, N.; Jiang, F.; Chopp, M., Migration of adhesive glioma cellsfront propagation and fingering, Phys. Rev. E, 86, 1, 011904 (2012)
[16] Kroening, S.; Goppelt-Struebe, M., Analysis of matrix-dependent cell migration with a barrier migration assay, Sci. Signal., 3, 126, pl1 (2010)
[17] Law, R.; Dieckmann, U., A dynamical system for neighborhoods in plant communities, Ecology, 81, 8, 2137-2148 (2000)
[18] Li, G.; Satyamoorthy, K.; Meier, F.; Berking, C.; Bogenrieder, T.; Herlyn, M., Function and regulation of melanoma-stromal fibroblast interactionswhen seeds meet soil, Oncogene, 22, 20, 3162-3171 (2003)
[19] Markham, D. C.; Simpson, M. J.; Maini, P. K.; Gaffney, E. A.; Baker, R. E., Incorporating spatial correlations into multispecies mean-field models, Phys. Rev. E, 88, 5, 052713 (2013)
[20] Middleton, A. M.; Fleck, C.; Grima, R., A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion, J. Theor. Biol., 359, 220-232 (2014) · Zbl 1412.92025
[21] Murrell, D. J., Local spatial structure and predator-prey dynamicscounterintuitive effects of prey enrichment, Am. Nat., 166, 3, 354-367 (2005)
[22] Oberringer, M.; Meins, C.; Bubel, M.; Pohlemann, T., A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts, Biol. Cell, 99, 4, 197-207 (2007)
[23] Painter, K. J.; Sherratt, J. A., Modelling the movement of interacting cell populations, J. Theor. Biol., 225, 3, 327-339 (2003) · Zbl 1464.92050
[24] Phillips, B. L.; Brown, G. P.; Greenlees, M.; Webb, J. K.; Shine, R., Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia, Austral Ecol., 32, 2, 169-176 (2007)
[25] Riahi, R.; Yang, Y.; Zhang, D. D.; Wong, P. K., Advances in wound-healing assays for probing collective cell migration, J. Lab. Autom., 17, 1, 59-65 (2012)
[26] Shampine, L. F.; Reichelt, M. W., The Matlab ODE suite, SIAM J. Sci. Comput., 18, 1, 1-22 (1997) · Zbl 0868.65040
[29] Simpson, M. J.; Baker, R. E., Corrected mean-field models for spatially dependent advection-diffusion-reaction phenomena, Phys. Rev. E, 83, 5, 051922 (2011)
[30] Simpson, M. J.; Haridas, P.; McElwain, D. L.S., Do pioneer cells exist?, PloS One, 9, 1, e85488 (2014)
[31] Simpson, M. J.; Landman, K. A.; Bhaganagarapu, K., Coalescence of interacting cell populations, J. Theor. Biol., 247, 3, 525-543 (2007) · Zbl 1455.92016
[32] Simpson, M. J.; Landman, K. A.; Hughes, B. D., Multi-species simple exclusion processes, Physica A: Stat. Mech. Appl., 388, 4, 399-406 (2009)
[33] Simpson, M. J.; Landman, K. A.; Hughes, B. D., Cell invasion with proliferation mechanisms motivated by time-lapse data, Physica A: Stat. Mech. Appl., 389, 18, 3779-3790 (2010)
[34] Simpson, M. J.; Treloar, K. K.; Binder, B. J.; Haridas, P.; Manton, K. J.; Leavesley, D. I.; McElwain, D. L.S.; Baker, R. E., Quantifying the roles of cell motility and cell proliferation in a circular barrier assay, J. R. Soc. Interface, 10, 82, 20130007 (2013)
[35] Simpson, M. J.; Zhang, D. C.; Mariani, M.; Landman, K. A.; Newgreen, D. F., Cell proliferation drives neural crest cell invasion of the intestine, Dev. Biol., 302, 2, 553-568 (2007)
[36] Singer, A., Maximum entropy formulation of the Kirkwood superposition approximation, J. Chem. Phys., 121, 8, 3657-3666 (2004)
[37] Singh, A.; Hespanha, J. P., Approximate moment dynamics for chemically reacting systems, IEEE Trans. Autom. Control, 56, 2, 414-418 (2011) · Zbl 1368.80011
[38] Skellam, J., Random Dispersal in Theoretical Populations, Biometrika, 196-218 (1951) · Zbl 0043.14401
[39] Smallbone, K.; Gavaghan, D. J.; Gatenby, R. A.; Maini, P. K., The role of acidity in solid tumour growth and invasion, J. Theor. Biol., 235, 4, 476-484 (2005) · Zbl 1445.92082
[40] Swan, G. W., A mathematical model for the density of malignant cells in the spread of cancer in the uterus, Math. Biosci., 25, 3, 319-329 (1975) · Zbl 0315.92003
[41] Treloar, K. K.; Simpson, M. J., Sensitivity of edge detection methods for quantifying cell migration assays, PLoS One, 8, 6, e67389 (2013)
[42] Treloar, K. K.; Simpson, M. J.; Binder, B. J.; McElwain, D. L.S.; Baker, R. E., Assessing the role of spatial correlations during collective cell spreading, Sci. Rep., 4, 5713 (2014)
[43] Walter, M.; Wright, K. T.; Fuller, H.; MacNeil, S.; Johnson, W. E.B., Mesenchymal stem cell-conditioned medium accelerates skin wound healingan in vitro study of fibroblast and keratinocyte scratch assays, Exp. Cell Res., 316, 7, 1271-1281 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.