×

zbMATH — the first resource for mathematics

Prosperity is associated with instability in dynamical networks. (English) Zbl 1337.91018
Summary: Social, biological and economic networks grow and decline with occasional fragmentation and re-formation, often explained in terms of external perturbations. We show that these phenomena can be a direct consequence of simple imitation and internal conflicts between ‘cooperators’ and ‘defectors’. We employ a game-theoretic model of dynamic network formation where successful individuals are more likely to be imitated by newcomers who adopt their strategies and copy their social network. We find that, despite using the same mechanism, cooperators promote well-connected highly prosperous networks and defectors cause the network to fragment and lose its prosperity; defectors are unable to maintain the highly connected networks they invade. Once the network is fragmented it can be reconstructed by a new invasion of cooperators, leading to the cycle of formation and fragmentation seen, for example, in bacterial communities and socio-economic networks. In this endless struggle between cooperators and defectors we observe that cooperation leads to prosperity, but prosperity is associated with instability. Cooperation is prosperous when the network has frequent formation and fragmentation.

MSC:
91A22 Evolutionary games
91A43 Games involving graphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akerlof, G.A.; Shiller, R.J., Animal spirits: how human psychology drives the economy, and why it matters for global capitalism, (2009), Princeton University Press Princeton
[2] Albert, R.; Jeong, H.; Barabasi, A.-L., Error and attack tolerance of complex networks, Nature, 406, 378-382, (2000)
[3] Antal, T.; Traulsen, A.; Ohtsuki, H.; Tarnita, C.E.; Nowak, M.A., Mutation – selection equilibrium in games with multiple strategies, J. theor. biol., 258, 614-622, (2009)
[4] Antal, T.; Ohtsuki, H.; Wakeley, J.; Taylor, P.D.; Nowak, M.A., Evolution of cooperation by phenotypic similarity, Proc. natl. acad. sci. USA, 106, 8597-8600, (2009) · Zbl 1355.92145
[5] Aviles, L., Cooperation and non-linear dynamics: an ecological perspective on the evolution of sociality, Evol. ecol. res., 1, 459-477, (1999)
[6] Bandura, A., Social foundations of thought and action: A social cognitive theory, (1985), Prentice-Hall
[7] Barabasi, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512, (1999) · Zbl 1226.05223
[8] Bascompte, J., Disentangling the web of life, Science, 325, 416-419, (2009) · Zbl 1226.92064
[9] Billio, M., Getmansky, M., Lo, A.W., Pelizzon, L., 2010. Econometric measures of systemic risk in the finance and insurance sectors. NBER Working Paper.
[10] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U., Complex networks: structure and dynamics, Phys. rep., 424, 175-308, (2006) · Zbl 1371.82002
[11] Bonabeau, E., The perils of the imitation age, Harv. bus. rev., 82, 45-54, (2004)
[12] Castellano, C.; Fortunato, S.; Loreto, V., Statistical physics of social dynamics, Rev. mod. phys., 81, 591, (2009)
[13] Csermely, P., 2009. Weak Links: The Universal Key to the Stability of Networks and Complex Systems. Springer, Heidelberg. · Zbl 1180.82087
[14] Davidsen, J.; Ebel, H.; Bornholdt, S., Emergence of a small world from local interactions: modeling acquaintance networks, Phys. rev. lett., 88, 128701, (2002)
[15] Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P., The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280, 295-298, (1998)
[16] Dorogovtsev, S.N.; Mendes, J.F.F., Evolution of networks: from biological nets to the Internet and WWW (physics), (2003), Oxford University Press, Inc · Zbl 1109.68537
[17] Erdős, P.; Rényi, A., On the evolution of random graphs, Publ. math. inst. hungar. acad. sci, 5, 17-61, (1960) · Zbl 0103.16301
[18] Gross, T.; Sayama, H., Adaptive networks, (2009), Springer Heidelberg
[19] Haldane, A.G., 2009a. Credit is trust. In: Speech Given at the Association of Corporate Treasurers, Leeds.
[20] Haldane, A.G., 2009b. Rethinking the financial network. In: Speech Delivered at the Financial Student Association, Amsterdam.
[21] Haldane, A.G.; May, R.M., Systemic risk in banking ecosystems, Nature, 469, 351-355, (2011)
[22] Hanaki, N.; Peterhansl, A.; Dodds, P.S.; Watts, D.J., Cooperation in evolving social networks, Manage. sci., 53, 1036-1050, (2007) · Zbl 1232.91580
[23] Hauert, C.; Holmes, M.; Doebeli, M., Evolutionary games and population dynamics: maintenance of cooperation in public goods games, Proc. biol. sci., 273, 2565-2570, (2006)
[24] Helbing, D., 2010. Systemic Risks in Society and Economics. International Risk Governance Council.
[25] Hofbauer, J.; Sigmund, K., Evolutionary games and population dynamics, (1988), Cambridge University Press Cambridge
[26] Jackson, M.O., Social and economic networks, (2008), Princeton University Press Princeton · Zbl 1149.91051
[27] Jackson, M.O.; Rogers, B.W., Meeting strangers and friends of friends: how random are social networks?, Amer. econ. rev., 97, 890-915, (2007)
[28] Kleinberg, J.M.; Kumar, R.; Raghavan, P.; Rajagopalan, S.; Tomkins, A.S., The web as a graph: measurements, models, and methods, ()
[29] Krapivsky, P.L.; Redner, S., Network growth by copying, Phys. rev. E stat. nonlinear soft matter phys., 71, 036118, (2005)
[30] Kumar, R.; Raghavan, P.; Rajagopalan, S.; Sivakumar, D.; Tomkins, A.; Upfal, E., Stochastic models for the web graph, (), 57-65
[31] Levin, S.A., Fragile dominion, (2000), Helix Books Santa Fe, NM, USA
[32] Lieberman, E.; Hauert, C.; Nowak, M.A., Evolutionary dynamics on graphs, Nature, 433, 312-316, (2005)
[33] May, R.M.; Levin, S.A.; Sugihara, G., Complex systems: ecology for bankers, Nature, 451, 893-895, (2008)
[34] Montoya, J.M.; Pimm, S.L.; Sole, R.V., Ecological networks and their fragility, Nature, 442, 259-264, (2006)
[35] Moran, P.A.P., The statistical processes of evolutionary theory, (1962), Clarendon Press Oxford
[36] Nathanson, C.G.; Tarnita, C.E.; Nowak, M.A., Calculating evolutionary dynamics in structured populations, Plos comput. biol., 5, e1000615, (2009)
[37] Newman, M.E.J.; Strogatz, S.H.; Watts, D.J., Random graphs with arbitrary degree distributions and their applications, Phys. rev. E, 64, 026118, (2001)
[38] Nowak, M.; Sigmund, K., Oscillations in the evolution of reciprocity, J. theor. biol., 137, 21-26, (1989)
[39] Nowak, M.A., Evolutionary dynamics: exploring the equations of life, (2006), Harvard University Press Cambridge, MA · Zbl 1115.92047
[40] Nowak, M.A., Five rules for the evolution of cooperation, Science, 314, 1560-1563, (2006)
[41] Nowak, M.A.; Sigmund, K., Evolutionary dynamics of biological games, Science, 303, 793-799, (2004)
[42] Nowak, M.A.; Tarnita, C.E.; Antal, T., Evolutionary dynamics in structured populations, Philos. trans. R soc. London B biol. sci., 365, 19-30, (2010)
[43] Nowak, M.A.; Tarnita, C.E.; Wilson, E.O., The evolution of eusociality, Nature, 466, 1057-1062, (2010)
[44] Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M.A., A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441, 502-505, (2006)
[45] Pacheco, J.M.; Traulsen, A.; Nowak, M.A., Active linking in evolutionary games, J. theor. biol., 243, 437-443, (2006)
[46] Paperin, G.; Green, D.G.; Sadedin, S., Dual-phase evolution in complex adaptive systems, J. R. soc. interface, 8, 609-629, (2011)
[47] Perc, M.; Szolnoki, A., Coevolutionary games—A mini review, Biosystems, 99, 109-125, (2010)
[48] Poncela, J., Evolutionary game dynamics in a growing structured population, New J. phys., 11, 083031, (2009)
[49] Poncela, J.; Gomez-Gardenes, J.; Floria, L.M.; Sanchez, A.; Moreno, Y., Complex cooperative networks from evolutionary preferential attachment, Plos one, 3, e2449, (2008)
[50] Rainey, P.B.; Rainey, K., Evolution of cooperation and conflict in experimental bacterial populations, Nature, 425, 72-74, (2003)
[51] Rozenberg, G., 1997. Handbook of Graph Grammars and Computing by Graph Transformation: Volume I: Foundations. World Scientific, River Edge, NJ, USA. · Zbl 0908.68095
[52] Santos, F.C.; Pacheco, J.M.; Lenaerts, T., Cooperation prevails when individuals adjust their social ties, Plos comput. biol., 2, e140, (2006)
[53] Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; van Nes, E.H.; Rietkerk, M.; Sugihara, G., Early-warning signals for critical transitions, Nature, 461, 53-59, (2009)
[54] Schweitzer, F.; Fagiolo, G.; Sornette, D.; Vega-Redondo, F.; Vespignani, A.; White, D.R., Economic networks: the new challenges, Science, 325, 422-425, (2009) · Zbl 1226.91057
[55] Sole, R.V., Pastor-Satorras, R., Smith, E., Kepler, T.B., 2002. A model of large-scale proteome evolution. Adv. Complex Syst. 5. · Zbl 1020.92024
[56] Sornette, D., Why stock markets crash: critical events in complex financial systems, (2003), Princeton University Press Princeton, NJ · Zbl 1126.91001
[57] Stiglitz, J.E., Contagion, liberalization, and the optimal structure of globalization, J. globalization dev., 1, 2, (2010)
[58] Szabó, G.; Fáth, G., Evolutionary games on graphs, Phys. rep., 446, 97-216, (2007)
[59] Tarnita, C.E.; Antal, T.; Ohtsuki, H.; Nowak, M.A., Evolutionary dynamics in set structured populations, Proc. natl. acad. sci. USA, 106, 8601-8604, (2009)
[60] Tarnita, C.E.; Ohtsuki, H.; Antal, T.; Fu, F.; Nowak, M.A., Strategy selection in structured populations, J. theor. biol., 259, 570-581, (2009)
[61] Traulsen, A.; Shoresh, N.; Nowak, M., Analytical results for individual and group selection of any intensity, Bull. math. biol., 70, 1410-1424, (2008) · Zbl 1144.92035
[62] Traulsen, A.; Semmann, D.; Sommerfeld, R.D.; Krambeck, H.J.; Milinski, M., Human strategy updating in evolutionary games, Proc. natl. acad. sci. USA, 107, 2962-2966, (2010)
[63] Travisano, M.; Velicer, G.J., Strategies of microbial cheater control, Trends microbiol., 12, 72-78, (2004)
[64] Vazquez, A., Flammini, A., Maritan, A., Vespignani, A., 2003. Modeling of protein interaction networks. Complexus 1, 38-44.
[65] Wakano, J.Y.; Nowak, M.A.; Hauert, C., Spatial dynamics of ecological public goods, Proc. natl. acad. sci., 106, 7910-7914, (2009)
[66] Wakeley, J., Coalescent theory: an introduction, (2008), Roberts Company Publishers Greenwood Village, CO · Zbl 1366.92001
[67] Watts, D.J.; Strogatz, S.H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442, (1998) · Zbl 1368.05139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.