×

Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. (English) Zbl 1337.60093

Author’s abstract: We study determinantal random point processes on a compact complex manifold \(X\) associated to a Hermitian metric on a line bundle over \(X\) and a probability measure on \(X\). Physically, this setup describes a gas of free fermions on \(X\) subject to a \(U(1)\)-gauge field and when \(X\) is the Riemann sphere it specializes to various random matrix ensembles. Our general setup will also include the setting of weighted orthogonal polynomials in \(\mathbb C^n\), as well as in \(\mathbb R^n\). It is shown that, in the many particle limit, the empirical random measures on \(X\) converge exponentially towards the deterministic pluripotential equilibrium measure, defined in terms of the Monge-Ampère operator of complex pluripotential theory. More precisely, a large deviation principle (LDP) is established with a good rate functional which coincides with the (normalized) pluricomplex energy of a measure recently introduced in [R. J. Berman et al., Publ. Math., Inst. Hautes Étud. Sci. 117, 179–245 (2013; Zbl 1277.32049)]. We also express the LDP in terms of the Ray-Singer analytic torsion. This can be seen as an effective bosonization formula, generalizing the previously known formula in the Riemann surface case to higher dimensions. The paper is concluded with a heuristic quantum field theory interpretation of the resulting effective boson-fermion correspondence.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60F10 Large deviations
60G57 Random measures
60B20 Random matrices (probabilistic aspects)
60K40 Other physical applications of random processes
58Z05 Applications of global analysis to the sciences
81T99 Quantum field theory; related classical field theories

Citations:

Zbl 1277.32049
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alvarez-Gaumé, L., Bost, J.-B., Moore, G., Nelson, P., Vafa, C.: Bosonization on higher genus Riemann surfaces. Commun. Math. Phys. 112(3), 503-552 (1987) · Zbl 0647.14019
[2] Bedford E., Taylor A.: The Dirichlet problem for a complex Monge-Ampere equation. Invent. Math. 37(1), 1-44 (1976) · Zbl 0315.31007
[3] Ben Arous G., Guinnet A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517-542 (1997) · Zbl 0954.60029
[4] Ben Arous G., Zeitouni O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123-134 (1998) · Zbl 0916.60022
[5] Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Corrected Reprint of the 1992 Original. Grundlehren Text Editions. Berlin: Springer-Verlag, 2004 · Zbl 1037.58015
[6] Berman R.J.: Bergman kernels and local holomorphic Morse inequalities. Math. Z. 248(2), 325-344 (2004) · Zbl 1066.32002
[7] Berman, R.J.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. 131(5), 35 (2009) · Zbl 1191.32008
[8] Berman, R.J.: Bergman kernels for weighted polynomials and weighted equilibrium measures of C∧n. Indiana Univ. Math. J. 58(4), 19 (2009) · Zbl 1175.32002
[9] Berman, R.J.: Determinantal point processes and fermions on complex manifolds: bulk universality. Preprint at ArXiv:0811.3341 (2008) · Zbl 1189.60101
[10] Berman, R.J.: Large deviations and entropy for determinantal point processes on complex manifold (this is version 1 of the preprint 2008 at ArXiv:0812.4224) · Zbl 1136.82367
[11] Berman, R.J.: The Quillen metric, analytic torsion and tunneling for high powers of a holomorphic line bundle. ArXiv:1106.2965 (2011) · Zbl 1039.82504
[12] Berman, R.J.: Kahler-Einstein metrics emerging from free fermions and statistical mechanics. J. High Energy Phys. (JHEP) 2011(10), 22 (2011) · Zbl 1303.83009
[13] Berman R.J., Boucksom S.: Growth of balls of holomorphic sections and energy at equilibrium. Invent. Math. 181(2), 337 (2010) · Zbl 1208.32020
[14] Berman R.J., Boucksom S., Witt Nyström D.: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207(1), 1-27 (2011) · Zbl 1241.32030
[15] Berman, R.J., Boucksom, S., Guedj, V.: Zeriahi, A.: A variational approach to complex Monge-Ampere equations. Publ. Math. de l’IHÉS 117, 179-245 (2013) · Zbl 1277.32049
[16] Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion. Commun. Math. Phys. 115(1), 49-78 (1988) · Zbl 0651.32017
[17] Bloom, T., Levenberg, N.: Asymptotics for Christoffel functions of planar measures. J. Anal. Math. 106, 353-371 (2008) · Zbl 1158.28001
[18] Bloom T.: Weighted polynomials and weighted pluripotential theory. Trans. Am. Math. Soc. 361, 2163-2179 (2009) · Zbl 1166.32019
[19] Bloom, T.: Large Deviations for VanDerMonde Determinants. Talk Given at the Workshop on Complex Hyperbolic Geometry and Related Topics (November 17-21, 2008) at the Fields institute. http://www.fields.utoronto.ca/audio/08-09/hyperbolic/bloom/ · Zbl 1192.53076
[20] Bloom T., Levenberg N.: Transfinite diameter notions in C∧N and integrals of Vandermonde determinants. Ark. Mat. 48(1), 17-40 (2010) · Zbl 1196.31003
[21] Bloom T., Levenberg N.: Pluripotential energy. Potential Anal. 36(1), 155-176 (2012) · Zbl 1235.32025
[22] Boucksom S., Essidieux P., Guedj V.: Zeriahi: Monge-Ampere equations in big cohomology classes. Acta Math. 205(2), 199-262 (2010) · Zbl 1213.32025
[23] Burgess C.P., Lütken C.A., Quevedo F.: Bosonization in higher dimensions. Phys. Lett. B 336, 18 (1994) · Zbl 0990.81691
[24] Deift, P.A.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences, New York: American Mathematical Society, Providence, 1999 · Zbl 0997.47033
[25] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, pp. xiv+346. Jones and Bartlett Publishers. Boston, MA (1993) · Zbl 0793.60030
[26] Demailly J.P.: Regularization of closed positive currents and intersection theory. J. Algebr. Geom. 1(3), 361-409 (1992) · Zbl 0777.32016
[27] Demailly, J.-P.: Complex analytic and algebraic geometry. http://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf · Zbl 0916.60022
[28] Demailly, J.-P.: Potential theory in several complex variables. http://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/nice_cimpa.pdf · Zbl 0954.60029
[29] Douglas M.R., Klevtsov S.: Bergman kernel from path integral. Commun. Math. Phys. 293(1), 205-230 (2010) · Zbl 1192.53076
[30] Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. New York: Springer, 2005 · Zbl 1241.32030
[31] Frohlich, J., Götschmann, R., Marchetti, P.A.: Bosonization of fermi systems in arbitrary dimension in terms of gauge forms. J. Phys. A 28, 1169 (1995) · Zbl 0841.58067
[32] Gawedzki, K.: Lectures on conformal field theory. http://www.math.ias.edu/QFT/faIV, or see pp. 727-805. In: Deligne, P., Freed, D. (eds.) Classical Field Theory. Quantum Fields and Strings: A Course for Mathematicians, vol. I, 2 (Princeton, NJ, 1996/1997). Providence: American Mathematical Society, 1999 · Zbl 1170.81430
[33] Ginibre J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440-449 (1965) · Zbl 0127.39304
[34] Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley Classics Library. New York: Wiley, 1994 · Zbl 0836.14001
[35] Guedj V., Zeriahi A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607-639 (2005) · Zbl 1087.32020
[36] Guedj V., Zeriahi A.: The weigthed Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2), 442-487 (2007) · Zbl 1143.32022
[37] Guionnet, A.: Large random matrices: lectures on macroscopic asymptotics. École d’Été de Probabilités de Saint-Flour XXXVI. Lecture Notes in Mathematics, vol. 1957. New York: Springer, 2006 · Zbl 1168.60003
[38] Hedenmalm, H., Makarov, N.: Quantum Hele-Shaw flow, math.PR/0411437, Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. 106(3), 859-907 (2013) · Zbl 1336.82010
[39] Hough J.B., Krishnapur M., Peres Y.l., Virág B.: Determinantal processes and independence. Probab. Surv. 3, 206-229 (2006) · Zbl 1189.60101
[40] Johansson K.: On Szegö’s asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math. (2) 112(3), 257-304 (1988) · Zbl 0661.30001
[41] Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151-204 (1998) · Zbl 1039.82504
[42] Johansson, K.: Random matrices and determinantal processes. arXiv:math-ph/0510038 · Zbl 1411.60144
[43] Klimek, M.: Pluripotential theory. London Mathematical Society Monographs. New Series, 6. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press, 1991 · Zbl 0742.31001
[44] Kolodziej S.: The complex Monge-Ampère equation. Acta Math. 180(1), 69-117 (1998) · Zbl 0913.35043
[45] Levenberg, N.: Weighted pluripotential theory results of Berman-Boucksom. arXiv:1010.4035
[46] Macchi O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83-122 (1975) · Zbl 0366.60081
[47] Onofri E.: On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86(3), 321-326 (1982) · Zbl 0506.47031
[48] Ross, J., Witt Nystrom, D.: Analytic test configurations and geodesic rays. arXiv:1101.1612 · Zbl 1300.32021
[49] Saff, E., Totik, V.: Logarithmic potentials with exteriour fields. Berlin: Springer, 1997. (with an appendix by Bloom, T) · Zbl 0881.31001
[50] Schaposnik F.A.: A comment on bosonization in d ≥ 2 dimensions. Phys. Lett. B 356(1,10), 39-44 (1995)
[51] Scardicchio, A., Torquato, S., Zachary, C.E.: Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. Theory Exp. 11(P11019), 39 (2008) · Zbl 1456.82079
[52] Scardicchio, A., Torquato, S., Zachary, C.E.: Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. Phys. Rev. E (3) 79(4), 19 (2009) (041108) · Zbl 0913.35043
[53] Sloan I.H., Womersley R.S.: How good can polynomial interpolation on the sphere be. Adv. Comput. Math. 14(3), 195-226 (2001) · Zbl 0980.41003
[54] Stone, M.: Bosonization. World Scientific, Singapore (1994)
[55] Soshnikov, A.: Determinantal random point fields. (Russian) Uspekhi Mat. Nauk 55, 5(335), 107-160 (2000); translation in Russian Math. Surv. 55(5), 923-975 (2000) · Zbl 0991.60038
[56] Soulé, C.: Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, vol. 33. Cambridge: Cambridge University, 1992 · Zbl 0812.14015
[57] Verlinde E., Verlinde H.: Chiral bosonization, determinants, and the string partition function. Nucl. Phys. B 288, 357 (1987)
[58] Tian, G.: Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zürich. Basel: Birkhäuser Verlag, 2000 · Zbl 0978.53002
[59] Wentworth, R.A.: Precise constants in bosonization formulas on Riemann surfaces II. arXiv:1008.2914 · Zbl 1158.58017
[60] Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339-411 (1978) · Zbl 0369.53059
[61] Zabrodin A.: Matrix models and growth processes: from viscous flows to the quantum Hall effect. NATO Sci. Ser. II Math. 221, 261-318 (2006) · Zbl 1136.82367
[62] Zeitouni, O., Zelditch, S.: Large deviations of empirical measures of zeros of random polynomials. Int. Math. Res. Not. 20, 3935-3992 (2010) · Zbl 1206.60031
[63] Zelditch S.: Large deviations of empirical measures of zeros on Riemann surfaces. Int. Math. Res. Not. 2013, 592-664 (2013) · Zbl 1314.30088
[64] Zelditch S.: Book review of “Holomorphic Morse inequalities and Bergman kernels Journal” (by Xiaonan Ma and George Marinescu). Bull. Am. Math. Soc. 46, 349-361 (2009) · Zbl 1292.00044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.