zbMATH — the first resource for mathematics

Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes. (English) Zbl 1337.60088
This paper introduces a new class of models for spot prices in energy markets. In particular, the authors consider the class of volatility modulated Lévy-driven Volterra (VMLV) processes and its subclass of Lévy semistationary (LSS) processes, and model energy spot prices driven by VMLV and LSS processes. In this framework, deseasonalised spot prices are modeled in stationarity, and the model is flexible enough to include a stochastic volatility component, including jumps and spikes and allowing to capture the so-called “Samuelson effect”. The authors provide a short description of the VMLV and LSS processes in Section 2, while Section 3 is an in-depth study of the proposed model, including a description of the second order structure and no-arbitrage conditions. The fourth section focuses on the pricing of forward contracts, while the fifth section applies the model to real data and shows its practical relevance.

60G51 Processes with independent increments; Lévy processes
60H05 Stochastic integrals
60G48 Generalizations of martingales
91G20 Derivative securities (option pricing, hedging, etc.)
91G80 Financial applications of other theories
ghyp; QRM
Full Text: DOI Euclid arXiv
[1] Barndorff-Nielsen, O.E. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 353 401-419.
[2] Barndorff-Nielsen, O.E. (1978). Hyperbolic distributions and distributions on hyperbolae. Scand. J. Stat. 5 151-157. · Zbl 0386.60018
[3] Barndorff-Nielsen, O.E. (2011). Stationary infinitely divisible processes. Braz. J. Probab. Stat. 25 294-322. · Zbl 1244.60037 · doi:10.1214/11-BJPS140
[4] Barndorff-Nielsen, O.E. and Basse-O’Connor, A. (2011). Quasi Ornstein-Uhlenbeck processes. Bernoulli 17 916-941. · Zbl 1233.60020 · doi:10.3150/10-BEJ311
[5] Barndorff-Nielsen, O.E., Benth, F.E. and Veraart, A.E.D. (2010). Modelling electricity forward markets by ambit fields. CREATES Research Paper 2010-41, Aarhus Univ. · Zbl 1304.91213
[6] Barndorff-Nielsen, O.E., Benth, F.E. and Veraart, A.E.D. (2011). Ambit processes and stochastic partial differential equations. In Advanced Mathematical Methods for Finance (G. Di Nunno and B. Øksendal, eds.) 35-74. Heidelberg: Springer. · Zbl 1239.91188 · doi:10.1007/978-3-642-18412-3_2
[7] Barndorff-Nielsen, O.E. and Halgreen, C. (1977). Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Z. Wahrsch. Verw. Gebiete 38 309-311. · Zbl 0403.60026 · doi:10.1007/BF00533162
[8] Barndorff-Nielsen, O.E., Kent, J. and Sørensen, M. (1982). Normal variance-mean mixtures and \(z\) distributions. Internat. Statist. Rev. 50 145-159. · Zbl 0497.62019 · doi:10.2307/1402598
[9] Barndorff-Nielsen, O.E. and Schmiegel, J. (2004). Spatio-temporal modeling based on Lévy processes, and its applications to turbulence. Uspekhi Mat. Nauk 59 63-90. · doi:10.4213/rm701
[10] Barndorff-Nielsen, O.E. and Schmiegel, J. (2007). Ambit processes: With applications to turbulence and tumour growth. In Stochastic Analysis and Applications , (F.E. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal and T. Zhang, eds.). Abel Symp. 2 93-124. Berlin: Springer. · Zbl 1155.92020 · doi:10.1007/978-3-540-70847-6_5
[11] Barndorff-Nielsen, O.E. and Schmiegel, J. (2008). Time change, volatility, and turbulence. In Mathematical Control Theory and Finance (A. Sarychev, A. Shiryaev, M. Guerra and M. Grossinho, eds.) 29-53. Berlin: Springer. · Zbl 1157.60043 · doi:10.1007/978-3-540-69532-5_3
[12] Barndorff-Nielsen, O.E. and Schmiegel, J. (2009). Brownian semistationary processes and volatility/intermittency. In Advanced Financial Modelling , (H. Albrecher, W. Rungaldier and W. Schachermeyer, eds.). Radon Ser. Comput. Appl. Math. 8 1-25. Walter de Gruyter, Berlin. · Zbl 1195.60053 · doi:10.1515/9783110213140.1
[13] Barndorff-Nielsen, O.E. and Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 167-241. · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[14] Barndorff-Nielsen, O.E. and Shiryaev, A. (2010). Change of Time and Change of Measure. Advanced Series on Statistical Science and Applied Probability 13 . Hackensack, NJ: World Scientific Co. Pte. Ltd. · Zbl 1234.60003
[15] Barndorff-Nielsen, O.E. and Stelzer, R. (2011). Multivariate supOU processes. Ann. Appl. Probab. 21 140-182. · Zbl 1235.60032 · doi:10.1214/10-AAP690
[16] Barndorff-Nielsen, O.E. and Stelzer, R. (2013). The multivariate SupOU stochastic volatility model. Math. Finance 23 257-296. · Zbl 1262.91139
[17] Barndorff-Nielsen, O.E. and Veraart, A.E.D. (2012). Stochastic volatility of volatility and variance risk premia. Journal of Financial Econometrics 11 1-46.
[18] Basse, A. (2008). Gaussian moving averages and semimartingales. Electron. J. Probab. 13 1140-1165. · Zbl 1191.60043 · doi:10.1214/EJP.v13-526 · emis:journals/EJP-ECP/_ejpecp/viewarticlec8d2.html · eudml:229677
[19] Basse, A. and Pedersen, J. (2009). Lévy driven moving averages and semimartingales. Stochastic Process. Appl. 119 2970-2991. · Zbl 1175.60040 · doi:10.1016/j.spa.2009.03.007
[20] Basse-O’Connor, A., Graversen, S.E. and Pedersen, J. (2013). Stochastic integration on the real line. Theory Probab. Appl. · Zbl 1306.60061
[21] Bender, C. and Marquardt, T. (2009). Integrating volatility clustering into exponential Lévy models. J. Appl. Probab. 46 609-628. · Zbl 1188.91239 · doi:10.1239/jap/1253279842
[22] Benth, F.E. (2011). The stochastic volatility model of Barndorff-Nielsen and Shephard in commodity markets. Math. Finance 21 595-625. · Zbl 1247.91178
[23] Benth, F.E., Härdle, W.K. and López Cabrera, B. (2011). Pricing of Asian temperature risk. In Statistical Tools for Finance and Insurance (P. Civek, W. Härdle and R. Weron, eds.) 163-199. Heidelberg: Springer. · doi:10.1007/978-3-642-18062-0_5
[24] Benth, F.E., Kallsen, J. and Meyer-Brandis, T. (2007). A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing. Appl. Math. Finance 14 153-169. · Zbl 1160.91337 · doi:10.1080/13504860600725031
[25] Benth, F.E., Klüppelberg, C., Müller, G. and Vos, L. (2012). Forward pricing in electricity markets based on stable CARMA spot models. Unpublished manuscript.
[26] Benth, F.E. and Vos, L. (2013). Cross-commodity spot price modeling with stochastic volatility and leverage for energy markets. Adv. in Appl. Probab. · Zbl 1269.91036
[27] Benth, F.E. and Šaltytė Benth, J. (2004). The normal inverse Gaussian distribution and spot price modelling in energy markets. Int. J. Theor. Appl. Finance 7 177-192. · Zbl 1107.91309 · doi:10.1142/S0219024904002360
[28] Benth, F.E. and Šaltytė Benth, J. (2009). Dynamic pricing of wind futures. Energy Economics 31 16-24.
[29] Benth, F.E., Šaltytė Benth, J. and Koekebakker, S. (2008). Stochastic Modelling of Electricity and Related Markets. Advanced Series on Statistical Science and Applied Probability 11 . Singapore: World Scientific. · Zbl 1143.91002
[30] Benth, F.E., Šaltytė Benth, J. andKoekebakker, S. (2007). Putting a price on temperature. Scand. J. Stat. 34 746-767. · Zbl 1164.62077
[31] Bjerksund, P., Rasmussen, H. and Stensland, G. (2000). Valuation and risk management in the nordic electricity market. Working paper, Institute of Finance and Management Science, Norwegian School of Economics and Business Administration.
[32] Breymann, W. and Lüthi, D. (2010). ghyp: A package on generalized hyperbolic distributions. Manual for the R package ghyp.
[33] Brockwell, P.J. (2001). Continuous-time ARMA processes. In Stochastic Processes : Theory and Methods , (D. Shanbhag and C. Rao, eds.). Handbook of Statist. 19 249-276. Amsterdam: North-Holland. · Zbl 1011.62088 · doi:10.1016/S0169-7161(01)19011-5
[34] Brockwell, P.J. (2001). Lévy-driven CARMA processes. Ann. Inst. Statist. Math. 53 113-124. · Zbl 0995.62089 · doi:10.1023/A:1017972605872
[35] Brockwell, P.J. (2004). Representations of continuous-time ARMA processes. J. Appl. Probab. 41A 375-382. · Zbl 1052.60024 · doi:10.1239/jap/1082552212
[36] Brockwell, P.J., Davis, R.A. and Yang, Y. (2011). Estimation for non-negative Lévy-driven CARMA processes. J. Bus. Econom. Statist. 29 250-259. · Zbl 1214.62091 · doi:10.1198/jbes.2010.08165
[37] Burger, M., Graeber, B. and Schindlmayr, G. (2007). Managing Energy Risk : An Integrated View on Power and Other Energy Markets . Chichester: Wiley Finance.
[38] Burger, M., Klar, B., Mueller, A. and Schindlmayr, G. (2003). A spot market model for pricing derivatives in electricity markets. Quant. Finance 4 109-122.
[39] Carr, P. and Madan, D. (1998). Option valuation using the fast Fourier transform. J. Comput. Finance 2 61-73.
[40] Cartea, A. and Figueroa, M. (2005). Pricing in electricity markets: A mean reverting jump-diffusion model with seasonality. Appl. Math. Finance 12 313-335. · Zbl 1134.91526 · doi:10.1080/13504860500117503
[41] Carverhill, A. (2003). An affine model of long maturity forward rates, with predictable risk premium. Working paper, School of Business, Univ. Hong Kong.
[42] Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Math. Ann. 300 463-520. · Zbl 0865.90014 · doi:10.1007/BF01450498 · eudml:165264
[43] Duffie, D. (1992). Dynamic Asset Pricing Theory . Princeton: Princeton Univ. Press. · Zbl 1140.91041
[44] Folland, G.B. (1984). Real Analysis : Modern Techniques and Their Applications. Pure and Applied Mathematics ( New York ). New York: Wiley. · Zbl 0549.28001
[45] García, I., Klüppelberg, C. and Müller, G. (2011). Estimation of stable CARMA models with an application to electricity spot prices. Stat. Model. 11 447-470. · doi:10.1177/1471082X1001100504
[46] Gradshteyn, I.S. and Ryzhik, I.M. (2007). Table of Integrals , Series , and Products , 7th ed. Amsterdam: Elsevier/Academic Press. · Zbl 1208.65001
[47] Guasoni, P., Rásonyi, M. and Schachermayer, W. (2008). Consistent price systems and face-lifting pricing under transaction costs. Ann. Appl. Probab. 18 491-520. · Zbl 1133.91422 · doi:10.1214/07-AAP461
[48] Halgreen, C. (1979). Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrsch. Verw. Gebiete 47 13-17. · Zbl 0377.60020 · doi:10.1007/BF00533246
[49] Härdle, W.K. and López Cabrera, B. (2012). The implied market price of weather risk. Appl. Math. Finance 19 59-95. · Zbl 1372.91108 · doi:10.1080/1350486X.2011.591170
[50] Hikspoors, S. and Jaimungal, S. (2008). Asymptotic pricing of commodity derivatives for stochastic volatility spot models. Appl. Math. Finance 15 449-467. · Zbl 1156.91374 · doi:10.1080/13504860802170432
[51] Jurek, Z.J. and Vervaat, W. (1983). An integral representation for self-decomposable Banach space valued random variables. Z. Wahrsch. Verw. Gebiete 62 247-262. · Zbl 0488.60028 · doi:10.1007/BF00538800
[52] Karatzas, I. and Shreve, S.E. (1991). Brownian Motion and Stochastic Calculus , 2nd ed. Graduate Texts in Mathematics 113 . New York: Springer. · Zbl 0734.60060
[53] Klüppelberg, C., Meyer-Brandis, T. and Schmidt, A. (2010). Electricity spot price modelling with a view towards extreme spike risk. Quant. Finance 10 963-974. · Zbl 1210.91155 · doi:10.1080/14697680903150496
[54] Knight, F.B. (1992). Foundations of the Prediction Process. Oxford Studies in Probability 1 . New York: The Clarendon Press Oxford Univ. Press. · Zbl 0762.60027
[55] Koopman, S.J., Ooms, M. and Carnero, M.A. (2007). Periodic seasonal Reg-ARFIMA-GARCH models for daily electricity prices. J. Amer. Statist. Assoc. 102 477. · Zbl 1284.62669 · doi:10.1198/016214506000000753
[56] McNeil, A.J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management : Concepts , Techniques and Tools. Princeton Series in Finance . Princeton, NJ: Princeton Univ. Press. · Zbl 1089.91037
[57] Pakkanen, M.S. (2011). Brownian semistationary processes and conditional full support. Int. J. Theor. Appl. Finance 14 579-586. · Zbl 1218.60067 · doi:10.1142/S0219024911006747
[58] Protter, P.E. (2005). Stochastic Integration and Differential Equations , 2nd ed. Stochastic Modelling and Applied Probability 21 . Berlin: Springer.
[59] Rajput, B.S. and Rosiński, J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 451-487. · Zbl 0659.60078 · doi:10.1007/BF00339998
[60] Sato, K.i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68 . Cambridge: Cambridge Univ. Press. · Zbl 0973.60001
[61] Schachermayer, W. (2004). The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14 19-48. · Zbl 1119.91046 · doi:10.1111/j.0960-1627.2004.00180.x
[62] Schwartz, E. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. J. Finance 52 923-973.
[63] Shiryaev, A.N. (1999). Essentials of Stochastic Finance : Facts , Models , Theory. Advanced Series on Statistical Science and Applied Probability 3 . River Edge, NJ: World Scientific. · Zbl 0926.62100
[64] Trolle, A. and Schwartz, E. (2009). Unspanned stochastic volatility and the pricing of commodity derivatives. Review of Financial Studies 22 4423-4461.
[65] Veraart, A.E.D. and Veraart, L.A.M. (2013). Modelling electricity day-ahead prices by multivariate Lévy semistationary processes. In Quantitative Energy Finance (F.E. Benth, V. Kholodnyi and P. Laurence, eds.). Vienna: Springer.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.