zbMATH — the first resource for mathematics

Irregular holonomic kernels and Laplace transform. (English) Zbl 1337.32020
Authors’ abstract: Given a (not necessarily regular) holonomic \(\mathcal D\)-module \(\mathcal L\) defined on the product of two complex manifolds, we prove that the correspondence associated with \(\mathcal L\) commutes (in some sense) with the de Rham functor. We apply this result to the study of the classical Laplace transform. The main tools used here are the theory of ind-sheaves and its enhanced version.

32C38 Sheaves of differential operators and their modules, \(D\)-modules
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
44A10 Laplace transform
Full Text: DOI arXiv
[1] Björk, J.-E.: Analytic \({\fancyscript{D}}\)-Modules and Applications. Kluwer Academic Publisher, Dordrecht (1993)
[2] D’Agnolo, A.: On the Laplace transform for tempered holomorphic functions. Int. Math. Res. Not. (2013)
[3] D’Agnolo, A., Kashiwara, M.: Riemann-Hilbert correspondence for holonomic D-modules. arXiv:1311.2374v1
[4] D’Agnolo, A; Schapira, P, Leray’s quantization of projective duality, Duke Math. J., 84, 453-496, (1996) · Zbl 0879.32011
[5] Guillermou, S., Schapira, P.: Microlocal theory of sheaves and Tamarkin’s non displaceability theorem. arXiv:1106.1576v2 · Zbl 1319.32006
[6] Kashiwara, M.: Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers, Séminaire Goulaouic-Schwartz, 1979-1980, Exp. No. 19, École Polytech., Palaiseau (1980) · Zbl 1204.14010
[7] Kashiwara, M, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., 20, 319-365, (1984) · Zbl 0566.32023
[8] Kashiwara, M.: D-Modules and Microlocal Calculus, Translations of Mathematical Monographs 217. American Math. Soc. (2003) · Zbl 0879.32011
[9] Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften 292. Springer, Berlin (1990)
[10] Kashiwara, M., Schapira, P.: Moderate and Formal Cohomology Associated with Constructible Sheaves, vol. 64. Mem. Soc. Math., France (1996) · Zbl 0881.58060
[11] Kashiwara, M., Schapira, P.: Integral transforms with exponential kernels and Laplace transform. J. AMS 10, 939-972 (1997) · Zbl 0888.32004
[12] Kashiwara, M., Schapira, P.: Ind-sheaves. Astérisque 271, 134 +vi (2001) · Zbl 0993.32009
[13] Kashiwara, M., Schapira, P.: Microlocal study of ind-sheaves. I. Micro-support and regularity. Astérisque 284, 143-164 (2003) · Zbl 1053.35009
[14] Kashiwara, M., Schapira, P.: Regular and irregular holonomic D-modules (to appear) · Zbl 1354.32008
[15] Katz, N; Laumon, G, Transformation de Fourier et majoration de sommes d’exponentielles, Publ. IHES, 63, 361-418, (1985)
[16] Kedlaya, KS, Good formal structures for flat meromorphic connections, I: surfaces, Duke Math. J., 154, 343-418, (2010) · Zbl 1204.14010
[17] Kedlaya, KS, Good formal structures for flat meromorphic connections, II: excellent schemes, J. Am. Math. Soc., 24, 183-229, (2011) · Zbl 1282.14037
[18] Mochizuki, T.: Good formal structure for meromorphic flat connections on smooth projective surfaces. In: Algebraic Analysis and Around, Adv. Stud. Pure Math., vol. 54, pp. 223-253. Math. Soc. Japan, Tokyo (2009) · Zbl 1183.14027
[19] Mochizuki, T.: Wild harmonic bundles and wild pure twistor D-modules. Astérisque 340, 607 +x (2011) · Zbl 1245.32001
[20] Sabbah, C.: Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque 263, 187 +vii (2000) · Zbl 0947.32005
[21] Tamarkin, D.: Microlocal condition for non-displaceability. arXiv:0809.1584v1 · Zbl 1416.35019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.