zbMATH — the first resource for mathematics

Bifurcation patterns in generalized models for the dynamics of normal and leukemic stem cells with signaling. (English) Zbl 1336.34068
Summary: The dynamics of normal and leukemic stem cell clones competing for resources in the same bone marrow niche can be modeled in a systems biology approach. We derive three related models describing the time evolution of normal and chronic myelogenous leukemia (CML) stem cells. The approach is based on the idea that stem cell proliferation is regulated by feedback mechanisms. We assume here that the growth of stem cell clones can be approximated by Tsallis functions, which depend on population numbers to ensure the communication between different stem cell strains. Of particular interest is the influence of medication, for example, by the CML drug imatinib, on the stem cell dynamics, which can be simulated by a variation of the parameterization of the differential equation systems. The basic 2D model represents the contest between cycling normal and wild-type CML stem cells. In addition, extension of the basic model (i) by coupled reservoirs of quiescent stem cells and (ii) by a third stem cell species, which could be interpreted as an imatinib-resistant mutant, is investigated. We analyze the global dynamics of the corresponding 2D, 3D, and 4D equation systems by analytic means and provide a complete map of the bifurcation landscape that occurs for changing values of the respective signaling strengths and growth or death parameters. This includes a complete classification of equilibria and their linear and non-linear Lyapunov stability.

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations
37B25 Stability of topological dynamical systems
92C37 Cell biology
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI
[1] Wodarz, Stem cell regulation and the development of blast crisis in chronic myeloid leukemia: Implications for the outcome of imatinib treatment and discontinuation, Medical Hypotheses 70 pp 128– (2008) · doi:10.1016/j.mehy.2007.03.040
[2] Michor, Dynamics of chronic myeloid leukaemia, Nature 435 (7046) pp 1267– (2005) · doi:10.1038/nature03669
[3] Woywod, Dynamical models of mutated chronic myelogenous leukaemia cells for a post-imatinib treatment scenario: response to dasatinib or nilotinib therapy, PLoS Computational Biology x pp y–
[4] Berezansky, Delay differential equations with hill’s type growth rate and linear harvesting, Computers & Mathematcs with Applications 49 pp 549– (2005) · Zbl 1090.34062 · doi:10.1016/j.camwa.2004.07.015
[5] Foo, Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding g-csf to imatinib, PLoS Computational Biology 5 (9) pp e1000503– (2009) · doi:10.1371/journal.pcbi.1000503
[6] Flå, Recent Trends in Dynamical Systems, Springer Proceedings in Mathematics & Statistics pp 221– (2013) · Zbl 1314.37061 · doi:10.1007/978-3-0348-0451-6_11
[7] Beck, Generalized statistical mechanics for superstatistical systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369 (1935) pp 453– (2010) · Zbl 1211.82028 · doi:10.1098/rsta.2010.0280
[8] Beck, Recent developments in superstatistics, Brazilian Journal of Physics 08 39 pp 357– (2009)
[9] Tsallis, Nonadditive entropy Sq and nonextensive statistical mechanics: applications in geophysics and elsewhere, Acta Geophysica 60 (3) pp 502– (2012) · doi:10.2478/s11600-012-0005-0
[10] Van der Straeten, Superstatistical distributions from a maximum entropy principle, Physical Review E 78 (5) pp 051101– (2008) · doi:10.1103/PhysRevE.78.051101
[11] Wilk, Power laws in elementary and heavy-ion collisions, The European Physical Journal A 40 (3) pp 299– (2009) · doi:10.1140/epja/i2009-10803-9
[12] Kantarjian, New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance, Annals of Internal Medicine 145 pp 913– (2006) · doi:10.7326/0003-4819-145-12-200612190-00008
[13] Savage, Imatinib mesylate: a new oral targeted therapy, New England Journal of Medicine 346 pp 683– (2002) · doi:10.1056/NEJMra013339
[14] Tomlinson, The mutation rate and cancer, Proceedings of the National Academy of Sciences of the United States of America 93 pp 14800– (1996) · doi:10.1073/pnas.93.25.14800
[15] Wang, Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model, Cancer Cell 15 pp 514– (2009) · doi:10.1016/j.ccr.2009.04.001
[16] Buchdunger, Inhibition of the abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative, Cancer Research 56 pp 100–
[17] Deininger, The development of imatinib as a therapeutic agent for chronic myeloid leukemia, Blood 105 pp 2640– (2005) · doi:10.1182/blood-2004-08-3097
[18] Roeder, Pathogenesis, treatment effects, and resistance dynamics in chronic myeloid leukemia-insights from mathematical model analyses, Journal of Molecular Medicine 86 (1) pp 17– (2008) · doi:10.1007/s00109-007-0241-y
[19] Glauche, Stem cell proliferation and quiescence-two sides of the same coin, PLoS Computational Biology 5 (7) pp e1000447– (2009) · doi:10.1371/journal.pcbi.1000447
[20] Hochhaus, Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia, Leukemia 23 pp 1054– (2009) · doi:10.1038/leu.2009.38
[21] Hochhaus, Resistance to targeted therapy in chronic myelogenous leukemia, Seminars in Hematology 44 pp 15– (2007) · doi:10.1053/j.seminhematol.2006.12.002
[22] Ernst, Dynamics of BCR-ABL mutated clones prior to hematologic or cytogenetic resistance to imatinib, Haematologica 93 pp 186– (2008) · doi:10.3324/haematol.11993
[23] Gruber, Selecting and deselecting imatinib-resistant clones: observations made by longitudinal, quantitative monitoring of mutated BCR-ABL, Leukemia 19 pp 2159– (2005) · doi:10.1038/sj.leu.2403983
[24] Gruber, A novel Bcr-Abl splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib, Leukemia 20 pp 2057– (2006) · doi:10.1038/sj.leu.2404400
[25] Gruber FX Towards a quantitative understanding of CML resistance 2009
[26] Gruber, Dynamics of the emergence of dasatinib and nilotinib resistance in imatinib resistant CML patients, Leukemia 26 pp 172– · doi:10.1038/leu.2011.187
[27] Shieh, Moving on up: second-line agents as initial treatment for newly-diagnosed patients with chronic phase CML, Clinical Medicine Insights: Oncology 5 pp 185– (2011)
[28] Wodarz, Emergence and prevention of resistance against small molecule inhibitors, Seminars in Cancer Biology 15 pp 506– (2005) · doi:10.1016/j.semcancer.2005.07.002
[29] Ackleh, Global dynamics of hematopoietic stem cells and differentiated cells in a chronic myeloid leukemia model, Journal of Mathematical Biology 62 pp 975– (2011) · Zbl 1230.92021 · doi:10.1007/s00285-010-0360-x
[30] Doumic-Jauffet, Stability analysis of a simplified yet complete model for chronic myelogenous leukemia, Bulletin of Mathematical Biology 72 pp 1732– (2010) · Zbl 1203.92036 · doi:10.1007/s11538-009-9500-0
[31] Komarova, Effect of cellular quiescence on the success of targeted CML therapy, PLoS One 2 (10) pp e990– (2007) · doi:10.1371/journal.pone.0000990
[32] Komarova, Stochastic modeling of cellular colonies with quiescence: an application to drug resistance in cancer, Theoretical Population Biology 72 (4) pp 523– (2007) · Zbl 1141.92024 · doi:10.1016/j.tpb.2007.08.003
[33] Komarova, Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia, PLoS One 4 (2) pp e4423– (2009) · doi:10.1371/journal.pone.0004423
[34] Komarova, Combination therapies against chronic myeloid leukemia: short-term versus long-term strategies, Cancer Research 69 (11) pp 4904– (2009) · doi:10.1158/0008-5472.CAN-08-1959
[35] Komarova, Mathematical modeling of cyclic treatment of chronic myeloid leukemia, Mathematical Biosciences and Engineering 8 pp 289– (2011) · Zbl 1259.92047 · doi:10.3934/mbe.2011.8.289
[36] Paquin, Strategic treatment interruptions during imatinib treatment of chronic myelogenous leukemia, Bulletin of Mathematical Biology 73 pp 1082– (2010) · Zbl 1215.92035 · doi:10.1007/s11538-010-9553-0
[37] Roeder, Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications, Nature Medicine 12 (10) pp 1181– (2006) · doi:10.1038/nm1487
[38] Roeder, An ” age” -structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia, Bulletin of Mathematical Biology 71 (3) pp 602– (2009) · Zbl 1182.92043 · doi:10.1007/s11538-008-9373-7
[39] Devys, A model describing the growth and the size distribution of multiple metastatic tumors, Discrete and Continuous Dynamical Systems - Series B 12 pp 731– (2009) · Zbl 1195.35054 · doi:10.3934/dcdsb.2009.12.731
[40] Friedman, Tumor cells proliferation and migration under the influence of their microenvironment, Mathematical Biosciences and Engineering 8 pp 371– (2011) · Zbl 1259.92042 · doi:10.3934/mbe.2011.8.371
[41] Fujarewicz, On fitting of mathematical models of cell signaling pathways using adjoint systems, Mathematical Biosciences and Engineering 2 pp 527– (2005) · Zbl 1079.92024 · doi:10.3934/mbe.2005.2.527
[42] Peltier, Systems biology approaches to understanding stem cell fate choice, IET Systems Biology 4 (1) pp 1– (2010) · doi:10.1049/iet-syb.2009.0011
[43] Mustjoki, Impact of malignant stem cell burden on therapy outcome in newly diagnosed chronic myeloid leukemia patients, Leukemia 27 pp 1520– (2013) · doi:10.1038/leu.2013.19
[44] Lin, Features of fast living: On the weak selection for longevity in degenerate birth-death processes, Journal of Statistical Physics 148 pp 646– (2012) · Zbl 1257.82087 · doi:10.1007/s10955-012-0479-9
[45] Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003) · Zbl 1027.37002
[46] Rupp, Genuine equilibria of three body coulomb configurations, Few-Body Systems 48 pp 1– (2010) · doi:10.1007/s00601-010-0094-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.