×

A multiscale model of cardiovascular system including an immersed whole heart in the cases of normal and ventricular septal defect (VSD). (English) Zbl 1335.92024

Summary: A mathematical and computational model combining the heart and circulatory system has been developed to understand the hemodynamics of circulation under normal conditions and ventricular septal defect (VSD). The immersed boundary method has been introduced to describe the interaction between the moving two-dimensional heart and intracardiac blood flow. The whole-heart model is governed by the Navier-Stokes system; this system is combined with a multi-compartment model of circulation using pressure-flow relations and the linearity of the discretized Navier-Stokes system. We investigate the velocity field, flowmeters, and pressure-volume loop in both normal and VSD cases. Simulation results show qualitatively good agreements with others found in the literature. This model, combining the heart and circulation, is useful for understanding the complex, hemodynamic mechanisms involved in normal circulation and cardiac diseases.

MSC:

92C35 Physiological flow
92C50 Medical applications (general)
76Z05 Physiological flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adeler PT (2001) Hemodynamic simulation of the heart using a 2D model and MR data, IMM Math. Tech, DTU, IMM-PHD-2001-86
[2] Dahl SK (2012) Numerical simulations of blood flow in the left side of the heart. Department of Structural Engineering, Norwegian University of Science and Technology · Zbl 1429.92061
[3] De Hart Jrgen et al (2000) A two-dimensional fluid-structure interaction model of the aortic value. J Biomech 33(9):1079-1088 · doi:10.1016/S0021-9290(00)00068-3
[4] De Hart J et al (2000) A two-dimensional fluid-structure interaction model of the aortic value. J Biomech 33(9):1079-1088
[5] Dubini G, Migliavacca F, Pietrabissa R, Quarteroni A, Ragni S, Veneziani A (2000) From the global cardiovascular system hemodynamics down to the local blood motion: preliminary applications of a multiscale approach. In: Proceedings of European congress on computational methods in applied sciences and engineering, Barcelona, Spain
[6] Echobasics. http://www.echobasics.de/tte-en.html
[7] Formaggia L, Nobile F, Quarteroni A, Veneziani A (1999) Multiscale modeling of the circulatory system: a preliminary analysis. Comput Visual Sci 2:7583 · Zbl 1067.76624 · doi:10.1007/s007910050030
[8] Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561-582 · Zbl 1007.74035 · doi:10.1016/S0045-7825(01)00302-4
[9] Formaggia L, Lamponi D, Tuveri M, Veneziani A (2006) Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput Methods Biomech Ciomed Eng 9:273-288 · doi:10.1080/10255840600857767
[10] Formaggia L, Moura A, Nobile F (2007) On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. Math Model Number Anal 41:743-769 · Zbl 1139.92009 · doi:10.1051/m2an:2007039
[11] Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer, Italia · Zbl 1300.92005 · doi:10.1007/978-88-470-1152-6
[12] Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York · doi:10.1007/978-1-4757-2257-4
[13] Guadagni G et al (2001) A fluid-structure analysis of the structural and the fluid dynamic behavior of a new disposable pulsatile pump for cardiopulmonary bypass. In: Bioengineering conference ASME, vol 50 · Zbl 0244.92002
[14] Guyton A, Hall J (2006) Chapter 14: overview of the circulation; medical physics of pressure, flow, and resistance. In: Gruliow Rebecca (ed) Textbook of medical physiology, 11th edn. Elsevier Inc., Philadelphia, p 164
[15] Heart and Circulatory System. http://kidshealth.org/teen/
[16] Hong Tae-Hyup et al (2009) Characteristics of hemodynamics in a bileaflet mechanical heart valve using an implicit FSI method. World Acad Sci 3:557-562
[17] Hose DR et al (2002) BloodSim: coupled solid-fluid simulation of cardiovascular systems. In: ANSYS 2002 conference proceedings (CD), Pittsburgh
[18] Jacobsen JM, Adeler PT, Kim WY, Houlind K, Pedersen EM, Larsen JK (2001) Evaluation of a 2D model of the left side of the human heart against magnetic resonance velocity mapping. Cardiovas Eng 1
[19] Kerckhoffs R, Neal M, Gu Q, Bassingthwaighte J, Omens J, McCulloch A (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35:1-18 · doi:10.1007/s10439-006-9212-7
[20] Kim Y, Lee W, Jung E (2010) An immersed boundary heart model coupled with a multicompartment lumped model of the circulatory system. SIAM J Sci Comput 32:1809-1831 · Zbl 1429.92061 · doi:10.1137/090761963
[21] Laganà K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359-364
[22] McCracken MF, Peskin CS (1980) A vortex method for blood flow through heart valves. J Comput Phys 35:183-205 · Zbl 0428.92010 · doi:10.1016/0021-9991(80)90085-6
[23] McQueen DM, Peskin CS (1983) Computer-assisted design of pivoting disc prosthetic mitral valves. J Thorac Cardiovasc Surg 86:126-135
[24] McQueen DM, Peskin CS (1985) Computer-assisted design of butterfly bileaflet valves for the mitral position. Scand J Thor Cardiovasc Surg 19:139-148 · doi:10.3109/14017438509102709
[25] McQueen DM, Peskin CS (1989) A three-dimensional computational method for blood flow in the heart, II. Contractile fibers. J Comput Phys 89:289-297 · Zbl 0701.76130 · doi:10.1016/0021-9991(89)90050-8
[26] McQueen DM, Peskin CS (1997) Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J Supercomput 11:213-236 · doi:10.1023/A:1007951707260
[27] McQueen DM, Peskin CS (2000) A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. ACM SIGGRAPH Comput Gr 34:56-60 · doi:10.1145/563788.604453
[28] McQueen DM, Peskin CS (2001) Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity. In: Proceedings of ICTAM 2000, Kluwer Academic Publishers. To appear
[29] Mirabella L et al (2013) Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. Int J Numer Methods Biomed Eng 29(2):197-216 · doi:10.1002/cnm.2517
[30] Mosby (2000) Mosby’s medical dictionary, 8th edn. Elsevier Science Health Science div
[31] Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252-271 · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[32] Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220-252 · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[33] Peskin CS, McQueen DM (1980) Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J Comput Phys 37:113-132 · Zbl 0447.92009 · doi:10.1016/0021-9991(80)90007-8
[34] Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart: immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81:372-405 · Zbl 0668.76159 · doi:10.1016/0021-9991(89)90213-1
[35] Peskin CS, McQueen DM (1994) Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am J Physiol 266:H319-H328
[36] Peskin, CS; McQueen, DM; Othmer, HG (ed.); Adler, FR (ed.); Lewis, MA (ed.); Dallon, JC (ed.), Fluid dynamics of the heart and its valves, 309-337 (1996), Englewood Cliffs
[37] Peskin CS, Printz BF (1993) Improved volume conservation in the computation of flows with immersed boundaries. J Comput Phys 105:33-46 · Zbl 0762.92011 · doi:10.1006/jcph.1993.1051
[38] Peskin CS, Tu C (1986) Hemodynamics in congenital heart disease. Comput Biol Med 16:331-359 · doi:10.1016/0010-4825(86)90002-8
[39] Rutten MCM (1998) Fluid solid interaction in large arteries. Ph.D. dissertation, Eindhoven University of Technology · Zbl 0701.76130
[40] Segadal L, Matre K (1987) Blood velocity distribution in the human ascending aorta. Circulation 76:90-100 · doi:10.1161/01.CIR.76.1.90
[41] Thanopoulos BD et al (1999) Transcatheter closure of muscular ventricular septal defects with the amplatzer ventricular septal defect occluder: initial clinical applications in children 1. J Am Coll Cardiol 33(5):1395-1399 · doi:10.1016/S0735-1097(99)00011-X
[42] Ventricular Septal Defect (VSD). http://www.heart.org/HEARTORG/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.