×

zbMATH — the first resource for mathematics

On some perturbations of the total variation image inpainting method. III: Minimization among sets with finite perimeter. (English. Russian original) Zbl 1335.49024
J. Math. Sci., New York 207, No. 2, 142-146 (2015); translation from Probl. Mat. Anal. 78, 27-30 (2015).
Summary: We propose a model for the restoration of images consisting only of completely black or completely white regions with the use of Caccioppoli sets.
Editorial remark: for parts I and II, see [Zbl 1321.49060] and [Zbl 1321.49054].

MSC:
49J45 Methods involving semicontinuity and convergence; relaxation
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Arias, V. Casseles, and G. Sapiro, A Variational Framework for Non-Local Image Inpainting, IMA Preprint Series No. 2265 (2009).
[2] Burger, M; He, L; Schönlieb, C-B, Cahn-Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci., 2, 1129-1167, (2009) · Zbl 1180.49007
[3] M. Bertalmio, V. Caselles, S. Masnou, and G. Sapiro, Inpainting. www.math.univlyon1.fr/masnou/fichiers/publications/survey.pdf · Zbl 1180.49007
[4] Chan, TF; Kang, SH; Shen, J, Euler’s elastica and curvature based inpaintings, SIAM J. Appl. Math., 63, 564-592, (2002) · Zbl 1028.68185
[5] T. F. Chan and J. Shen, “Mathematical models for local nontexture inpaintings,” SIAM J. Appl. Math.62, No. 3, 1019-1043 (2001/02). · Zbl 1050.68157
[6] K. Papafitsoros, B. Sengul, and C.-B. Schönlieb, Combined First and Second Order Total Variation Impainting Using Split Bregman, IPOL Preprint (2012). · Zbl 1321.49060
[7] Shen, J, Inpainting and the fundamental problem of image processing, SIAM News, 36, 1-4, (2003)
[8] Bildhauer, M; Fuchs, M, On some perturbations of the total variation image inpainting method. part I: regularity theory, J. Math. Sci. New York, 202, 154-169, (2014) · Zbl 1321.49060
[9] M. Bildhauer and M. Fuchs, “On some perturbations of the total variation image inpainting method. Part II: Relaxation and dual variational formulation,” J. Math. Sci., New York · Zbl 1321.49054
[10] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000). · Zbl 0957.49001
[11] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel (1984). · Zbl 0545.49018
[12] I. Tamanini, “Regularity results for almost minimal oriented hypersurfaces,” Quaderni del Departimento di Matematica del Univ. di Lecce. Q1. 1984. · Zbl 1191.35007
[13] Giaquinta, M; Modica, G; Souček, J, Functionals with linear growth in the calculus of variations. I, Commentat. Math. Univ. Carol., 20, 143-156, (1979) · Zbl 0409.49006
[14] Giaquinta, M; Modica, G; Souček, J, Functionals with linear growth in the calculus of variations. II, Commentat. Math. Univ. Carol., 20, 157-172, (1979) · Zbl 0409.49007
[15] Xia, Q, Regularity of minimizers of quasi perimeters with a volume constraint, Interfaces Free Bound., 7, 339-352, (2005) · Zbl 1118.49031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.