# zbMATH — the first resource for mathematics

Stability of inverse problems for ultrahyperbolic equations. (English) Zbl 1335.35295
The authors consider inverse problems of determining a coefficient or a source term in an ultrahyperbolic equation $\Delta_y u(x,y)- \Delta_x u(x,y)- p(x,y') u(x,y)= F(x,y),$ where $$x= (x_1,\dots, x_n)\in \mathbb{R}^n$$, $$y= (y_1,\dots, y_m)\in \mathbb{R}^m$$, $$y'= (y_2,\dots, y_m)\in \mathbb{R}^{m-1}$$, $$\Delta_x= \sum^n_{i=1} \partial^2_{x_i}$$, $$\Delta_y= \sum^m_{j=1} \partial^2_{y_j}$$, by some lateral boundary data.
Consider the bounded domain $$D\subseteq\mathbb{R}^n$$ with smooth boundary $$\partial D$$, $$T>0$$, $$T_1>0$$, $$G(t,T_1)= \{y\in\mathbb{R}^m;|y_1|< T, |y'|< T_1\}$$, $$G'(T,T_1)\cap \{y_1=0\}$$, $$\nu(x)= (\nu_1(x),\dots, \nu_n(x))$$, the unit outward normal vector to $$\partial D,\partial_\nu u=(\nabla_x u,\nu)$$, $$\nabla_x= (\partial_{x_1},\dots, \partial_{x_n})$$, $$\Gamma\subseteq\partial D$$, $$\partial D_+= \{x\in\partial D; ((x-x_0,\nu)\geq 0\}$$, with $$(\cdots)$$ being the scalar product in $$\mathbb{R}^n$$ or $$\mathbb{R}^m$$. The authors consider the system
(1) $$\mathrm{Au}=\Delta_y u(x,y)-\Delta_x u(x,y)- p(x,y') u(x,y)= f(x,y') R(x,y)$$, $$(x,y)\in D\times G(T,T_1)$$,
(2) $$u(x,0,y')= \partial_{y_1} u(x,0,y')= 0$$, $$(x,y')\in D\times G'(T, T_1)$$,
(3) $$u(x,y)= 0$$, $$(x,y)\in\Gamma\times G(T, T_1)$$,
and they use the normed spaces $$(S_i,\|\cdot\|_i)$$, $$1\leq i\leq 10$$.
The authors consider the following hypotheses: $$M>0$$ is fixed, $$f\in S_1=L^2(D\times G')$$, $$p\in S_2= L^\infty(D\times G')$$, $$\| p\|_2\leq M$$, $$R\in H^1(-T,T; S_2)$$, $$\|\partial_{y_1}R\|_3\leq M$$, where $$S_3= L^2(-T, T;S_2)$$, $$\| f\|_1\leq M$$, $$\|\partial_{y_1} u\|_4\leq M$$, where $$S_4= H^2(D\times G)$$, $$(\exists r_0> 0)$$ $$(\forall(x,y')\in D\times G')(|R(x,0,y')|\geq r_0)$$, $$\max\{|x-x_0|; x\in\overline D\}<\sqrt{\beta T^2+\delta^2}$$, where $$0<\beta< 1$$, $$\delta> 0$$ and $$x_0\not\in\overline D$$, $$\partial D\cap\{|x- x_0|\geq \delta\}\subseteq\Gamma$$. They denote
\begin{aligned} \Omega(\delta) &= \{(x,y)\in D\times G(T, T_1);|x- x_0|^2- \beta|y|^2> \delta^2\},\\ \Omega'(\delta) &= \Omega(\delta)\cap \{y_1= 0\}.\end{aligned} They prove that, for any $$\delta_1> \delta$$, there exist $$C> 0$$ and $$\theta\in(0,1)$$, depending on $$M$$ and $$r_0$$, such that $$\| f\|_5\leq C\|\partial_\nu \partial_{y_1} u\|^\theta_6$$, where $$S_5= L^2(\Omega'(\delta_1))$$ and $$S_6= L^2(\Gamma\times G)$$.
The authors consider (1), (2), (3) in $$D\times G(T, 2T)$$, $$u= 0$$ on $$\partial D\times G(T, 2T)$$, $$\|\partial^k_{y_1} u\|_7\leq M$$, $$k\in \{1,2\}$$, $$T>{1\over\sqrt{\beta}}\max\{|x- x_0|; x\in\overline D\}$$, $$\|\partial^k_{y_1} R\|_8\leq M$$, $$k\in \{1,2\}$$, $$|R(x,0,y')|= 0$$, $$x\in\overline D$$, $$|y'|\leq 2T$$, where $$S_7= H^2(D\times G(T,2T))$$, $$S_8= L^2(-T, T; L^2(D\times \{|y'|< 2T\}))$$, and prove that, for any $$\varepsilon> 0$$, there exist constants $$C>0$$ and $$\theta\in(0,1)$$, depending on $$\varepsilon$$, $$M$$, $$x_0$$, such that $\| f\|_9\leq C \sum^2_{k=1} \|\partial_\nu \partial^k_{y_1} u\|_{10},$ where $$S_9= L^2(D\times\{|y'|< T-\varepsilon\})$$, $$S_{10}= L^2(\partial D_+\times G(T, 2T))$$.
Finally, they prove Hölder estimates which are global and local and the key tool is the Carleman estimate.

##### MSC:
 35R30 Inverse problems for PDEs 35A25 Other special methods applied to PDEs 35B35 Stability in context of PDEs
Full Text:
##### References:
 [1] Amirov, A. K., Doctoral Dissertation in Mathematics and Physics, Sobolev Institute of Mathematics, Novosibirsk, 1988. · Zbl 1172.35457 [2] Amirov, A. K., Integral Geometry and Inverse Problems for Kinetic Equations, VSP, Utrecht, 2001. · Zbl 1040.53001 [3] Amirov, A K; Yamamoto, M, A timelike Cauchy problem and an inverse problem for general hyperbolic equations, Appl. Math. Lett., 21, 885-891, (2008) · Zbl 1152.35512 [4] Bars, I, Survey of two-time physics, Class. Quantum Grav., 18, 3113-3130, (2001) · Zbl 0990.83010 [5] Baudouin, L; Puel, J -P, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18, 1537-1554, (2002) · Zbl 1023.35091 [6] Bellassoued, M, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Applicable Analysis, 83, 983-1014, (2004) · Zbl 1069.35035 [7] Bellassoued, M; Yamamoto, M, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation, J. Math. Pures Appl., 85, 193-224, (2006) · Zbl 1091.35112 [8] Bellassoued, M; Yamamoto, M, Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases, Applicable Analysis, 91, 35-67, (2012) · Zbl 1235.35051 [9] Bukhgeim, A L; Klibanov, M V, Global uniqueness of a class of multidimensional inverse problems, Soviet Math. Dokl., 24, 244-247, (1981) · Zbl 0497.35082 [10] Burskii, V P; Kirichenko, E V, Unique solvability of the Dirichlet problem for an ultrahyperbolic equation in a ball, Differential Equations, 44, 486-498, (2008) · Zbl 1172.35457 [11] Craig, W; Weinstein, S, On determinism and well-posedness in multiple time dimensions, Proc. Royal Society A, 465, 3023-3046, (2009) · Zbl 1181.35140 [12] Diaz, J B; Young, E C, Uniqueness of solutions of certain boundary value problems for ultrahyperbolic equations, Proc. Amer. Math. Soc., 29, 569-574, (1971) · Zbl 0237.35017 [13] Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. · Zbl 0108.09301 [14] Hörmander, L, Asgeirsson’s Mean value theorem and related identities, J. Funct. Anal., 184, 377-401, (2001) · Zbl 1019.35022 [15] Imanuvilov, O Y; Yamamoto, M, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14, 1229-1249, (1998) · Zbl 0992.35110 [16] Imanuvilov, O Y; Yamamoto, M, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems, 17, 717-728, (2001) · Zbl 0983.35151 [17] Isakov, V., Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006. · Zbl 1092.35001 [18] Kenig, C E; Ponce, G; Rolvung, C; Vega, L, Variable coefficient Schrödinger flows for ultrahyperbolic operators, Advances in Mathematics, 196, 373-486, (2005) · Zbl 1088.35065 [19] Kenig, C E; Ponce, G; Vega, L, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Inven. Math., 134, 489-545, (1998) · Zbl 0928.35158 [20] Khaĭdarov, A, On stability estimates in multidimensional inverse problems for differential equation, Soviet Math. Dokl., 38, 614-617, (1989) · Zbl 0679.35085 [21] Klibanov, M V, Inverse problems in the “large” and Carleman bounds, Differential Equations, 20, 755-760, (1984) · Zbl 0573.35083 [22] Klibanov, M V, Inverse problems and Carleman estimates, Inverse Problems, 8, 575-596, (1992) · Zbl 0755.35151 [23] Klibanov, M. V. and Timonov, A., Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004. · Zbl 1069.65106 [24] Kostomarov, D P, A Cauchy problem for an ultrahyperbolic equation, Differential Equations, 38, 1155-1161, (2002) · Zbl 1029.35069 [25] Kostomarov, D P, Problems for an ultrahyperbolic equation in the half-space with the boundedness condition for the solution, Differential Equations, 42, 261-268, (2006) · Zbl 1131.35370 [26] Lavrent’ev, M. M., Romanov, V. G. and Shishat·skiĭ, S. P., Ill-posed Problems of Mathematical Physics and Analysis, American Math. Soc., Providence, RI, 1986. · Zbl 0593.35003 [27] Owens, O G, Uniqueness of solutions of ultrahyperbolic partial differential equations, Amer. J. Math., 69, 184-188, (1947) · Zbl 0034.36102 [28] Romanov, V G, Estimate for the solution to the Cauchy problem for an ultrahyperbolic inequality, Doklady Math., 74, 751-754, (2006) · Zbl 1146.35099 [29] Sparling, G A J, Germ of a synthesis: space-time is spinorial, extra dimensions are time-like, Proc. Royal Soc. A, 463, 1665-1679, (2007) · Zbl 1134.81380 [30] Sulem, C. and Sulem, P. -L., The Nonlinear Schrödinger Equation, Spriner-Verlag, Berlin, 1999. · Zbl 0928.35157 [31] Tegmark, M, On the dimensionality of space-time, Class. Quant. Grav., 14, l69-l75, (1997) · Zbl 0879.53071 [32] Yamamoto, M, Carleman estimates for parabolic equations and applications, Inverse Problems, 25, 123013, (2009) · Zbl 1194.35512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.