×

zbMATH — the first resource for mathematics

Integral representation of a solution to the Stokes-Darcy problem. (English) Zbl 1335.35184
Summary: With methods of potential theory, we develop a representation of a solution of the coupled Stokes-Darcy model in a Lipschitz domain for boundary data in \(H^{-1/2}\).

MSC:
35Q30 Navier-Stokes equations
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chavarría-Krauser, Homogenization approach to water transport in plant tissues with periodic microstructures, Mathematical Modelling of Natural Phenomena 8 pp 80– (2013) · Zbl 1282.35036 · doi:10.1051/mmnp/20138406
[2] Steudle, Water uptake by plant roots: an integration of views, Plant Soil 226 pp 45– (2000) · doi:10.1023/A:1026439226716
[3] Layton, Coupling fluid flow with porous media flow, SIAM Journal on Numerical Analysis 40 pp 2195– (2003) · Zbl 1037.76014 · doi:10.1137/S0036142901392766
[4] Lipnikov, Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids, Numerical Mathematics 126 pp 321– (2014) · Zbl 1282.76139 · doi:10.1007/s00211-013-0563-3
[5] Quarteroni, Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Revista Matemática Complutense 22 pp 315– (2009)
[6] Arbogast, Homogenization of a Darcy-Stokes system modeling vuggy porous media, Computational Geosciences 10 pp 291– (2006) · Zbl 1197.76122 · doi:10.1007/s10596-006-9024-8
[7] Jäger, On the interface boundary condition of Beavers, Joseph and Saffman, SIAM Journal on Applied Mathematics 60 pp 1111– (2000) · Zbl 0969.76088 · doi:10.1137/S003613999833678X
[8] Hsiao, Boundary Integral Equations (2008) · Zbl 1157.65066 · doi:10.1007/978-3-540-68545-6
[9] Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements (2008) · Zbl 1153.65302 · doi:10.1007/978-0-387-68805-3
[10] Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems pp 1– (1994) · Zbl 0812.35001 · doi:10.1090/cbms/083/01
[11] Integral Operators in Potential Theory (1980)
[12] Maz’ya, Boundary Integral Equations. Analysis IV. Encyclopaedia of Mathematical Sciences pp 127– (1991)
[13] Netuka, An operator connected with the third boundary value problem in potential theory, Czechoslovak Mathematical Journal 22 pp 462– (1972) · Zbl 0241.31009
[14] Netuka, The third boundary value problem in potential theory, Czechoslovak Mathematical Journal 22 pp 554– (1972) · Zbl 0242.31007
[15] Netuka, Generalized Robin problem in potential theory, Czechoslovak Mathematical Journal 22 pp 312– (1972) · Zbl 0241.31008
[16] Lanzani, The Poisson’s problem for the Laplacian with Robin boundary condition in non-smooth domains, Revista Matemática Iberoamericana 22 pp 181– (2006) · Zbl 1160.35389 · doi:10.4171/RMI/453
[17] Lanzani, On the Robin boundary condition for Laplace’s equation in Lipschitz domains, Communications in PDEs 29 pp 91– (2004) · Zbl 1140.35402 · doi:10.1081/PDE-120028845
[18] Medková, The third problem for the Laplace equation with a boundary condition from Lp, Integral Equations and Operator Theory 54 pp 235– (2006) · Zbl 1093.31003 · doi:10.1007/s00020-003-1354-5
[19] Nečas, Direct methods in the theory of elliptic equations (2012) · Zbl 1246.35005 · doi:10.1007/978-3-642-10455-8
[20] Medková, The Neumann problem for the Laplace equation on general domains, Czechoslovak Mathematical Journal 57 pp 1107– (2007) · Zbl 1174.31305 · doi:10.1007/s10587-007-0116-y
[21] Medková, The integral equation method and the Neumann problem for the Poisson equation on NTA domains, Integral Equations and Operator Theory 63 pp 227– (2009) · Zbl 1179.31004 · doi:10.1007/s00020-008-1651-0
[22] Steinbach, Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries, Journal of Mathematical Analysis and Applications 262 pp 733– (2001) · Zbl 0998.35014 · doi:10.1006/jmaa.2001.7615
[23] Kohr, Viscous Incompressible Flow for Low Reynolds Numbers (2004) · Zbl 1064.76001
[24] Maremonti, Advances in Fluid Dynamics pp 69– (1999) · Zbl 0934.00018
[25] Odquist, Über die Randwertaufgaben in der Hydrodynamik zäher Flüssigkeiten, Mathematische Zeitschrift 32 pp 329– (1930) · JFM 56.0713.04 · doi:10.1007/BF01194638
[26] Pozrikidis, Boundary integral and singularity methods for linearized viscous flow (1992) · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[27] Varnhorn, The Stokes Equations (1994) · Zbl 0813.35085
[28] Dindoš, The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C1 domains, Archive for Rational Mechanics and Analysis 174 pp 1– (2004) · Zbl 1059.76014 · doi:10.1007/s00205-004-0320-y
[29] Fabes, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Mathematical Journal 57 pp 769– (1988) · Zbl 0685.35085 · doi:10.1215/S0012-7094-88-05734-1
[30] Kilty, The Lp Dirichlet problem for the Stokes system on Lipschitz domain, Indiana University Mathematics Journal 58 pp 1219– (2009) · Zbl 1168.35033 · doi:10.1512/iumj.2009.58.3568
[31] Kohr, Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains, Potential Anal 38 pp 1123– (2013) · Zbl 1269.47053 · doi:10.1007/s11118-012-9310-0
[32] Kohr, Stokes-Brinkman transmission problems on Lipschitz and C1 domains in Riemannian manifolds, Communications on Pure and Applied Analysis 9 pp 493– (2010) · Zbl 1228.35099 · doi:10.3934/cpaa.2010.9.493
[33] Maz’ya, The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO*, Functional Analysis and its Applications 43 pp 217– (2009) · Zbl 1271.47072 · doi:10.1007/s10688-009-0029-7
[34] Mitrea, Boundary value problems for the Stokes system in arbitrary Lipschitz domains (2012) · Zbl 1345.35076
[35] Dahlberg, Boundary value problems for the systems of elastics in Lipschitz domains, Duke Mathematical Journal 57 (3) pp 795– (1988) · Zbl 0699.35073 · doi:10.1215/S0012-7094-88-05735-3
[36] Medková, Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system, Acta Applicandae Mathematicae 116 pp 281– (2011) · Zbl 1235.35221 · doi:10.1007/s10440-011-9643-5
[37] Mitrea, The method of layer potentials for non-smooth domains with arbitrary topology, Integral Equations and Operator Theory 29 pp 320– (1997) · Zbl 0915.35032 · doi:10.1007/BF01320705
[38] Landkof, Foundations of Modern Potential Theory (1972) · Zbl 0253.31001 · doi:10.1007/978-3-642-65183-0
[39] Schechter, Principles of Functional Analysis (2002)
[40] Reidinger, A symmetric boundary element method for the Stokes problem in multiple connected domains, Mathematical Methods in the Applied Sciences 26 pp 77– (2003) · Zbl 1137.76429 · doi:10.1002/mma.347
[41] Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator (2007)
[42] Galdi, An introduction to the Mathematical Theory of the Navier-Stokes Equations I, Linearised Steady Problems (1998)
[43] Alessandrini, The linear constraint in Poincaré and Korn type inequalities, Forum Math 20 pp 557– (2008) · Zbl 1151.26319 · doi:10.1515/FORUM.2008.028
[44] Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces (2007) · Zbl 1126.46001
[45] Medková, Integral representation of a solution of the Neumann problem for the Stokes system, Numerical Algorithms 54 pp 459– (2010) · Zbl 1201.65214 · doi:10.1007/s11075-009-9346-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.