# zbMATH — the first resource for mathematics

An integral equation formalism for solving the nonlinear Klein-Gordon equation. (English) Zbl 1335.35159
Summary: In the paper, a new method for solving the nonlinear Klein-Gordon equation is proposed. To this end, the nonlinear partial differential equation of Klein-Gordon is transformed into an equivalent non-linear integral equation through a transformation. Here, a hyperbolic type of Green’s function is newly incorporated into the transformation in such a way that nonlinearities due to large wave motion are effectively taken into account. Based on the equivalent integral equation, a functional iteration procedure is constructed for solving the equation. The method proposed here is a semi-analytical one, not only fairly simple but straightforward to apply. Mathematical analysis is performed on the method’s convergence and uniqueness. An illustrative example of a solitary wave (or soliton) is presented to investigate the validity of the method, resulting in numerical solutions, appearing to be higher accurate compared to the usual 2nd order centered difference scheme in a stable manner. In fact, just a few iterations are enough for the numerical solution.

##### MSC:
 35L71 Second-order semilinear hyperbolic equations 35L15 Initial value problems for second-order hyperbolic equations
Full Text:
##### References:
 [1] Whitham, G. B., Linear and nonlinear waves, (2011), John Wiley & Sons · Zbl 0373.76001 [2] Ablowitz, M. J.; Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering transform, (1990), Cambridge University Press Cambridge · Zbl 0762.35001 [3] M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Notes Series, vol. 149, Cambridge University Press, Cambridge, London, 1991. · Zbl 0762.35001 [4] Lamb, G. L., Elements of soliton theory, (1980), Wiley New York · Zbl 0445.35001 [5] Semenov, A. A.; Usenko, C. V.; Lev, B. I., Positive definite states of a Klein-Gordon type particle, Phys. Lett. A, 372, 4180-4183, (2008) · Zbl 1221.81059 [6] Weder, R., Inverse scattering on the line for the nonlinear Klein-Gordon equation with a potential, J. Math. Anal. Appl., 252, 102-123, (2000) · Zbl 0970.35120 [7] Pecher, H., Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185, 2, 261-270, (1984) · Zbl 0538.35063 [8] Rogers, C.; Shadwick, W. F., Backlund transformations, (1982), Academic New York · Zbl 0492.58002 [9] Strauss, W. A.; Vázquez, L., Numerical solution of a nonlinear Klein-Gordon equation, J. Comput. Phys., 28, 271-278, (1978) · Zbl 0387.65076 [10] Jiménez, S.; Vázquez, L., Analysis of four numerical schemes for a nonlinear Klein-Gordon equation, Appl. Math. Comput., 35, 61-94, (1990) · Zbl 0697.65090 [11] Duncan, D. B., Symplectic finite difference approximations of the nonlinear Klein-Gordon equation, J. SIAM Numer. Anal., 34, 5, 1742-1760, (1997) · Zbl 0889.65093 [12] Dehghan, M., Efficient techniques for the second-order parabolic equation subject to nonlocal specifications, Appl. Numer. Math., 52, 39-62, (2005) · Zbl 1063.65079 [13] Dehghan, M., The one-dimensional heat equation subject to a boundary integral specification, Chaos Solitons Fractals, 32, 661-675, (2007) · Zbl 1139.35352 [14] Vu-Quoc, L.; Li, S., Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation, Comput. Methods Appl. Mech., 107, 341-391, (1993) · Zbl 0790.65101 [15] Fei, Z.; Vázquez, L., Two energy conserving numerical schemes for the sine-Gordon equation, Appl. Math. Comput., 45, 1, 17-30, (1991) · Zbl 0732.65107 [16] Jiménez, S., Derivation of the discrete conservation laws for a family of finite difference schemes, Appl. Math. Comput., 64, 1, 13-45, (1994) · Zbl 0806.65081 [17] Wong, Y. S.; Chang, Q.; Gong, L., An initial-boundary value problem of a nonlinear Klein-Gordon equation, Appl. Math. Comput., 84, 1, 77-93, (1997) · Zbl 0884.65091 [18] Lynch, M. A.M., Large amplitude instability in finite difference approximations to the Klein-Gordon equation, Appl. Numer. Math., 31, 2, 173-182, (1999) · Zbl 0937.65098 [19] Lakestani, M.; Dehghan, M., Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation, Comput. Phys. Commun., 181, 1392-1401, (2010) · Zbl 1219.65111 [20] Wang, Q.; Cheng, D., Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach, Appl. Math. Comput., 162, 381-401, (2005) · Zbl 1063.65107 [21] Tourigny, Y., Product approximation for nonlinear Klein-Gordon equations, IMA J. Numer. Anal., 9, 449-462, (1990) · Zbl 0707.65088 [22] Argyris, J.; Haase, M., An engineer’s guide to soliton phenomena: application of the finite element method, Comput. Methods Appl. Mech., 6, 71-122, (1987) · Zbl 0624.76020 [23] Chen, J. B., Symplectic and multi symplectic Fourier pseudo spectral discretizations for the Klein-Gordon equation, Lett. Math. Phys., 75, 3, 293-305, (2006) · Zbl 1104.37049 [24] Li, X.; Guo, B. Y., A Legendre spectral method for solving nonlinear Klein-Gordon equation, J. Comput. Math., 15, 2, 105-126, (1997) · Zbl 0876.65073 [25] Scott, A. C., A nonlinear Klein-Gordon equation, Am. J. Phys., 37, 52-69, (1969) [26] Morawetz, C. S., Time decay for the nonlinear Klein-Gordon equation, Proc. R. Soc. Lond. A. Math., 306, 1486, 291-296, (1968) · Zbl 0157.41502 [27] Shatah, J., Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38, 5, 685-696, (1985) · Zbl 0597.35101 [28] Kaya, D.; El-Sayed, S. M., A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156, 2, 341-353, (2004) · Zbl 1084.65101 [29] Abbasbandy, S., Numerical solution of non-linear Klein-Gordon equations by variational iteration method, Int. J. Numer. Methods Eng., 70, 876-881, (2007) · Zbl 1194.65120 [30] Yusufoglu, E., The variational iteration method for studying the Klein-Gordon equation, Appl. Math. Lett., 21, 669-674, (2008) · Zbl 1152.65475 [31] Ablowitz, M. J.; Herbst, B. M.; Schober, C., On the numerical solution of the sine-Gordon equation: I. integrable discretizations and homoclinic manifolds, J. Comput. Phys., 126, 299-314, (1996) · Zbl 0866.65064 [32] Ramos, J. I., The sine-Gordon equation in the finite line, Appl. Math. Comput., 124, 45-93, (2001) · Zbl 1026.65071 [33] Batiha, B.; Noorani, M. S.M.; Hashim, I., Numerical solution of sine-Gordon equation by variational iteration method, Phys. Lett. A, 370, 437-440, (2007) · Zbl 1209.65105 [34] Dehghan, M.; Shokri, A., A numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions, Numer. Methods Part. Differ. Eqn., 24, 687-698, (2008) · Zbl 1135.65380 [35] Cheng, R. J.; Liew, K. M., Analyzing two-dimensional sine-Gordon equation with the mesh-free reproducing kernel particle Ritz method, Comput. Methods Appl. Mech., 245-246, 15, 132-143, (2012) · Zbl 1354.65202 [36] Jang, T. S.; Choi, H. S.; Han, S. L., A new method for detecting nonlinear damping and restoring forces in nonlinear oscillation systems from transient data, Int. J. Non-linear Mech., 44, 7, 801-808, (2009) [37] Jang, T. S.; Han, S. L.; Kinoshita, T., An inverse measurement of the sudden underwater movement of the sea-floor by using the time-history record of the water-wave elevation, Wave Motion, 47, 3, 146-155, (2010) · Zbl 1231.86014 [38] Jang, T. S.; Back, H. S.; Han, S. L.; Kinoshita, T., Indirect measurement of the impulsive load to a nonlinear system from dynamic responses: inverse problem formulation, Mech. Syst. Signal Process., 24, 6, 1665-1681, (2010) [39] Jang, T. S., Non-parametric simultaneous identification of both the nonlinear damping and restoring characteristics of nonlinear systems whose dampings depend on velocity alone, Mech. Syst. Signal Process., 25, 4, 1159-1173, (2011) [40] Jang, T. S.; Baek, H. S.; Choi, H. S.; Lee, S. G., A new method for measuring nonharmonic periodic excitation forces in nonlinear damped systems, Mech. Syst. Signal Process., 25, 6, 2219-2228, (2011) [41] Jang, T. S., A new semi-analytical approach to large deflections of Bernoulli-Euler-v. karman beams on a linear elastic foundation: nonlinear analysis of infinite beams, Int. J. Mech. Sci., 66, 22-32, (2013) [42] Jang, T. S., A method for simultaneous identification of the full nonlinear damping and the phase shift and amplitude of the external harmonic excitation in a forced nonlinear oscillator, Comput. Struct., 120, 15, 77-85, (2013) [43] Jang, T. S.; Baek, H. S.; Paik, J. K., A new method for the nonlinear deflection analysis of an infinite beam resting on a nonlinear elastic foundation, Int. J. Non-linear Mech., 46, 1, 339-346, (2011) [44] Choi, S. W.; Jang, T. S., Existence and uniqueness of non-linear deflections of an infinite beam resting on a non-uniform non-linear elastic foundation, Bound. Value Probl., 2012, 1-24, (2012) [45] Jang, T. S.; Sung, H. G., A new semi-analytical method for the non-linear static analysis of an infinite beam on a non-linear elastic foundation: a general approach to a variable beam cross-section, Int. J. Non-linear Mech., 47, 4, 132-139, (2012) [46] Park, J.; Bai, H.; Jang, T. S., A numerical approach to static deflection analysis of an infinite beam on a nonlinear elastic foundation: one-way spring model, J. Appl. Math., 2013, 136358, (2013) · Zbl 1319.74013 [47] Dehghan, M.; Ghesmati, A., Application of the dual reciprocity boundary integral equation technique to solve the nonlinear Klein-Gordon equation, Comput. Phys. Commun., 181, 1410-1418, (2010) · Zbl 1219.65104 [48] Wazwaz, M., The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167, 1179-1195, (2005) · Zbl 1082.65584
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.