zbMATH — the first resource for mathematics

Nonsmooth bifurcations of mean field systems of two-dimensional integrate and fire neurons. (English) Zbl 1335.34073

34C23 Bifurcation theory for ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34A36 Discontinuous ordinary differential equations
92C20 Neural biology
Full Text: DOI
[1] L.F. Abbott and C. van Vreeswijk, Asynchronous states in networks of pulse-coupled oscillators, Learning Memory, 48 (1993), pp. 1483–1490.
[2] R. Brette and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, J. Neurophysiol., 94 (2005), pp. 3637–3642.
[3] A. Buzzi, P.R. da Silva, and M.A. Teixeira, A singular approach to discontinuous vector fields on the plane, J. Differential Equations, 231 (2006), pp. 633–655. · Zbl 1116.34008
[4] A. Colombo, M. di Bernardo, and M.R. Jeffrey, Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems, Phys. D, 241 (2011), pp. 1845–1860.
[5] M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, A.B. Nordmark, G.O. Tost, and P.T. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008), pp. 629–701. · Zbl 1168.34006
[6] A. Dhooge, W. Govaerts, and Yu.A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), pp. 141–164. · Zbl 1070.65574
[7] M. Dur-e-Ahmad, W. Nicola, S.A. Campbell, and F.K. Skinner, Network bursting using experimentally constrained single compartment CA3 hippocampal neuron models with adaptation, J. Comput. Neurosci., 33 (2012), pp. 21–40.
[8] L. Hertag, D. Dustewitz, and N. Brunel, Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise, Front. Comput. Neurosci., 8 (2014), 116.
[9] G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience, Springer, New York, 2010. · Zbl 1320.92002
[10] G.B. Ermentrout, Reduction of conductance-based models with slow synapses to neural nets, Neural Comput., 6 (1994), pp. 679–695.
[11] G.B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46 (1986), pp. 233–253. · Zbl 0594.58033
[12] J. Harris and G.B. Ermentrout, Bifurcations in the Wilson–Cowan equations with nonsmooth firing rate, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 43–72. · Zbl 1321.34062
[13] D.J.W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific, Singapore, 2010. · Zbl 1205.37004
[14] D.J.W. Simpson and J.D. Meiss, Aspects of bifurcation theory for piecewise-smooth, continuous systems, Phys. D, 241 (2012), pp. 1861–1868.
[15] F.D. Rossa and F. Dercole, The transition from persistence to nonsmooth-fold scenarios in relay control system, in Proceedings of the 18th IFAC World Congress, Milano, 2011, pp. 13287–13292.
[16] K.A. Ferguson, F. Njap, W. Nicola, F.K. Skinner, and S.A. Campbell, Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus, J. Comput. Neurosci. 39 (2015), pp. 289–309. · Zbl 1382.92052
[17] K.A. Ferguson, C.Y.L. Huh, B. Amilhon, S. Williams, and F.K. Skinner, Simple, biologically-constrained CA1 pyramidal cell models using an intact, whole hippocampus context, F1000Research, 3 (2014), 104 (doi: 10.12688/f1000research.3894.1).
[18] D. Hansel and G. Mato, Asynchronous states and the emergence of synchrony in large networks of excitatory and inhibitory neurons, Neural Comput., 15 (2003), pp. 1–56. · Zbl 1031.68098
[19] E.M. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Netw., 14 (2003), pp. 1569–1572.
[20] Yu.A. Kuznetsov, S. Rinaldi, and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), pp. 2157–2188. · Zbl 1079.34029
[21] R. Naud, N. Marcille, C. Clopath, and W. Gerstner, Firing patterns in the adaptive exponential integrate-and-fire model, Biol. Cybernet., 99 (2008), pp. 335–347. · Zbl 1161.92012
[22] W. Nicola, C. Ly, and S.A. Campbell, One-dimensional population density approaches to recurrently coupled networks of neurons with noise, SIAM J. Appl. Math. 75 (2015), pp. 2333––2360. · Zbl 1352.37199
[23] W. Nicola and S.A. Campbell, Bifurcations of large networks of two-dimensional integrate and fire neurons, J. Comput. Neurosci., 35 (2013), pp. 87–108. · Zbl 1276.92018
[24] D.Q. Nykamp and D. Tranchina, A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning, J. Comput. Neurosci., 8 (2000), pp. 19–50. · Zbl 0999.92008
[25] A. Omurtag, B.W. Knight, and L. Sirovich, On the simulation of large populations of neurons, J. Comput. Neurosci., 8 (2000), pp. 51–63. · Zbl 1036.92010
[26] J. Sotomayor, Generic bifurcations of dynamical systems, in Dynamical Systems, M.M. Peixoto, ed., Academic Press, New York, 1973, pp. 561–582. · Zbl 0296.58007
[27] J. Touboul, Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons, SIAM J. Appl. Math., 68 (2008), pp. 1045–1079. · Zbl 1149.34027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.