zbMATH — the first resource for mathematics

Lifting group actions, equivariant towers and subgroups of non-positively curved groups. (English) Zbl 1335.20045
Summary: If \(\mathcal C\) is a class of complexes closed under taking full subcomplexes and covers and \(\mathcal G\) is the class of groups admitting proper and cocompact actions on one-connected complexes in \(\mathcal C\), then \(\mathcal G\) is closed under taking finitely presented subgroups. As a consequence the following classes of groups are closed under taking finitely presented subgroups: groups acting geometrically on regular CAT(0) simplicial complexes of dimension 3, \(k\)-systolic groups for \(k\geq 6\), and groups acting geometrically on 2-dimensional negatively curved complexes. We also show that there is a finite non-positively curved cubical 3-complex that is not homotopy equivalent to a finite non-positively curved regular simplicial 3-complex. We include applications to relatively hyperbolic groups and diagrammatically reducible groups. The main result is obtained by developing a notion of equivariant towers, which is of independent interest.

20F67 Hyperbolic groups and nonpositively curved groups
57M07 Topological methods in group theory
20F65 Geometric group theory
20E07 Subgroup theorems; subgroup growth
20F05 Generators, relations, and presentations of groups
Full Text: DOI arXiv
[1] B H Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) 1250016, 66 · Zbl 1259.20052 · doi:10.1142/S0218196712500166
[2] N Brady, Branched coverings of cubical complexes and subgroups of hyperbolic groups, J. London Math. Soc. 60 (1999) 461 · Zbl 0940.20048 · doi:10.1112/S0024610799007644
[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer, Berlin (1999) · Zbl 0988.53001 · doi:10.1007/978-3-662-12494-9
[4] M R Bridson, D T Wise, \(\mathscr{VH}\) complexes, towers and subgroups of \(F\times F\), Math. Proc. Cambridge Philos. Soc. 126 (1999) 481 · Zbl 0942.20009 · doi:10.1017/S0305004199003503
[5] I M Chiswell, D J Collins, J Huebschmann, Aspherical group presentations, Math. Z. 178 (1981) 1 · Zbl 0443.20030 · doi:10.1007/BF01218369 · eudml:173085
[6] J M Corson, On finite groups acting on contractible complexes of dimension two, Geom. Dedicata 87 (2001) 161 · Zbl 0989.57003 · doi:10.1023/A:1012062101922
[7] S M Gersten, Reducible diagrams and equations over groups (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 15 · Zbl 0644.20024 · doi:10.1007/978-1-4613-9586-7_2
[8] S M Gersten, Subgroups of word hyperbolic groups in dimension \(2\), J. London Math. Soc. 54 (1996) 261 · Zbl 0861.20033 · doi:10.1112/jlms/54.2.261
[9] M Gromov, Hyperbolic groups (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7_3
[10] F Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71 (2003)
[11] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) · Zbl 1044.55001
[12] J Howie, On pairs of \(2\)-complexes and systems of equations over groups, J. Reine Angew. Math. 324 (1981) 165 · Zbl 0447.20032 · doi:10.1515/crll.1981.324.165 · crelle:GDZPPN002198436 · eudml:152351
[13] J Howie, How to generalize one-relator group theory (editors S M Gersten, J R Stallings), Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 53 · Zbl 0632.20021
[14] G C Hruska, D T Wise, Towers, ladders and the B B Newman spelling theorem, J. Aust. Math. Soc. 71 (2001) 53 · Zbl 0995.20018 · doi:10.1017/S1446788700002718
[15] T Januszkiewicz, J Światkowski, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. (2006) 1 · Zbl 1143.53039 · doi:10.1007/s10240-006-0038-5 · numdam:PMIHES_2006__104__1_0 · eudml:104219
[16] R Levitt, Full subcomplexes of \(\mathrm{CAT}(0)\) simplicial complexes, · arxiv:1109.3502
[17] R Levitt, Group actions on \(\mathrm{CAT}(0)\) simplicial complexes, · arxiv:1111.3076
[18] E Martínez-Pedroza, D T Wise, Relative quasiconvexity using fine hyperbolic graphs, Algebr. Geom. Topol. 11 (2011) 477 · Zbl 1229.20038 · doi:10.2140/agt.2011.11.477 · arxiv:1009.3532
[19] E Martínez-Pedroza, D T Wise, Coherence and negative sectional curvature in complexes of groups, Michigan Math. J. 62 (2013) 507 · Zbl 1309.57005 · doi:10.1307/mmj/1378757886 · euclid:mmj/1378757886
[20] D Osajda, A combinatorial non-positive curvature, I: Weak systolicity, · arxiv:1305.4661
[21] C D Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1 · Zbl 0078.16402 · doi:10.2307/1970113
[22] J P Serre, Trees, Springer (1980) · Zbl 0548.20018
[23] A J Sieradski, A coloring test for asphericity, Quart. J. Math. Oxford Ser. 34 (1983) 97 · Zbl 0522.57003 · doi:10.1093/qmath/34.1.97
[24] D Wise, Sixtolic complexes and their fundamental groups, preprint (2003)
[25] D T Wise, Sectional curvature, compact cores, and local quasiconvexity, Geom. Funct. Anal. 14 (2004) 433 · Zbl 1058.57003 · doi:10.1007/s00039-004-0463-x
[26] G Zadnik, Finitely presented subgroups of systolic groups are systolic, · Zbl 1302.05208 · arxiv:1307.3839
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.