zbMATH — the first resource for mathematics

On tense MV-algebras. (English) Zbl 1335.03069
Summary: The main aim of this article is to study tense MV-algebras which are just MV-algebras with new unary operations \(G\) and \(H\) which express a universal time quantifiers. Tense MV-algebras were introduced by D. Diaconescu and G. Georgescu [Fundam. Inform. 81, No. 4, 379–408 (2007; Zbl 1136.03045)]. Using a new notion of an fm-function between MV-algebras we settle a half of their Open problem about representation for some classes of tense MV-algebras, i.e., we show that any tense semisimple MV-algebra is induced by a time frame analogously to classical works in this field of logic. As a by-product we obtain a new characterization of extremal states on MV-algebras. Our method gives a general framework for representing functions with the so-called Jauch-Piron property (including MV-morphisms) between MV-algebras.

03G25 Other algebras related to logic
06D35 MV-algebras
Full Text: DOI arXiv
[1] Belluce, L. P., Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Can. J. Math., 38, 1356-1379, (1986) · Zbl 0625.03009
[2] Botur, M.; Chajda, I.; Halaš, R.; Kolařík, M., Tense operators on basic algebras, Int. J. Theor. Phys., 50, 3737-3749, (2011) · Zbl 1246.81014
[3] Burges, J., Basic tense logic, (Gabbay, D. M.; Günther, F., Handbook of Philosophical Logic, vol. II, (1984), D. Reidel Publ. Comp), 89-139
[4] Butnariu, D.; Klement, E. P., Triangular norm-based measures and games with fuzzy coalitions, (1993), Kluwer Academic Publishers Dordrecht · Zbl 0804.90145
[5] Chajda, I., Algebraic axiomatization of tense intuitionistic logic, Cent. Eur. J. Math., 9, (2011) · Zbl 1260.03113
[6] Chajda, I.; Kolařík, M., Dynamic effect algebras, Math. Slovaca, 62, 379-388, (2012) · Zbl 1324.03026
[7] Chajda, I.; Paseka, J., Dynamic effect algebras and their representation, Soft Comput., 16, 1733-1741, (2012) · Zbl 1318.03059
[8] Chang, C. C., Algebraic analysis of many valued logics, Trans. Am. Math. Soc., 88, 467-490, (1958) · Zbl 0084.00704
[9] Chiriţă, C., Tense θ-valued moisil propositional logic, Int. J. Comput. Commun. Control, 5, 642-653, (2010)
[10] Cignoli, R. L.O.; D’Ottaviano, I. M.L.; Mundici, D., Algebraic foundations of many-valued reasoning, (2000), Kluwer · Zbl 0937.06009
[11] Diaconescu, D.; Georgescu, G., Tense operators on MV-algebras and łukasiewicz-moisil algebras, Fundam. Inform., 81, 379-408, (2007) · Zbl 1136.03045
[12] Di Nola, A.; Navara, M., The σ-complete MV-algebras which have enough states, Colloq. Math., 103, 121-130, (2005) · Zbl 1081.06011
[13] Dvurečenskij, A.; Pulmannová, S., New trends in quantum structures, (2000), Kluwer Academic Publishers/Ister Sci Dordrecht-Boston-London/Bratislava · Zbl 0987.81005
[14] Figallo, A. V.; Pelaitay, G., Tense operators on shn-algebras, Pioneer J. Algebra Number Theory Appl., 1, 33-41, (2011) · Zbl 1283.03092
[15] Figallo, A. V.; Gallardo, G.; Pelaitay, G., Tense operators on m-symmetric algebras, Int. Math. Forum, 41, 2007-2014, (2011) · Zbl 1256.03068
[16] Greechie, R. J., Another nonstandard quantum logic (and how I found it), (Marlow, A. R., Mathematical Foundations of Quantum Theory, Papers from a conference held at Loyola University, New Orleans, June 2-4, 1977, (1978), Academic Press New York), 71-85
[17] Hansoul, G.; Teheux, B., Completeness results for many-valued łukasiewicz modal systems and relational semantics, (2006), available at:
[18] Jauch, J.; Piron, C., On the structure quantal proposition systems, Helv. Phys. Acta, 42, 842-848, (1969) · Zbl 0181.27603
[19] Kowalski, T., Varieties of tense algebras, Rep. Math. Log., 32, 53-95, (1998) · Zbl 0941.03066
[20] Łukasiewicz, J., On three-valued logic, (Borkowski, L., Selected Works by Jan Łukasiewicz, (1970), North-Holland Amsterdam), 87-88
[21] Ostermann, P., Many-valued modal propositional calculi, Z. Math. Log. Grundl. Math., 34, 343-354, (1988) · Zbl 0661.03011
[22] Paseka, J., Operators on MV-algebras and their representations, Fuzzy Sets Syst., 232, 62-73, (2013) · Zbl 1314.06016
[23] Pták, P.; Pulmannová, S., Orthomodular structures as quantum logics, (1991), Kluwer Academic Publishers Dordrecht-Boston-London · Zbl 0743.03039
[24] Pulmannová, S., On fuzzy hidden variables, Fuzzy Sets Syst., 155, 119-137, (2009) · Zbl 1079.81008
[25] Teheux, B., A duality for the algebras of a łukasiewicz \(n + 1\)-valued modal system, Stud. Log., 87, 13-36, (2007) · Zbl 1127.03050
[26] Teheux, B., Algebraic approach to modal extensions of łukasiewicz logics, (2009), Université de Liege, Doctoral thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.