zbMATH — the first resource for mathematics

Fractional Gaussian fields: a survey. (English) Zbl 1334.60055
Summary: We discuss a family of random fields indexed by a parameter $$s\in\mathbb{R}$$ which we call the fractional Gaussian fields, given by $\mathrm {FGF}_s(\mathbb R^d)=(-\Delta)^{-s/2}W,$ where $$W$$ is a white noise on $$\mathbb{R}^{d}$$ and $$(-\Delta)^{-s/2}$$ is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter $$H=s-d/2$$. In one dimension, examples of $$\mathrm{FGF}_{s}$$ processes include Brownian motion ($$s=1$$) and fractional Brownian motion ($$1/2<s<3/2$$). Examples in arbitrary dimension include white noise ($$s=0$$), the Gaussian free field ($$s=1$$), the bi-Laplacian Gaussian field ($$s=2$$), the log-correlated Gaussian field ($$s=d/2$$), Lévy’s Brownian motion ($$s=d/2+1/2$$), and multidimensional fractional Brownian motion ($$d/2<s<d/2+1$$). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines.
We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the $$\mathrm{FGF}_{s}$$ with $$s\in(0,1)$$ can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic $$2s$$-stable Lévy process.

MSC:
 60G22 Fractional processes, including fractional Brownian motion 60G60 Random fields 60G15 Gaussian processes 60G51 Processes with independent increments; Lévy processes 60G52 Stable stochastic processes 60-02 Research exposition (monographs, survey articles) pertaining to probability theory
DLMF
Full Text:
References:
 [1] R. J. Adler. The geometry of random fields . Society for Industrial and Applied Mathematics, 2010. · Zbl 1182.60017 [2] R. J. Adler and J. E. Taylor. Random fields and geometry , volume 115. Springer, 2007. · Zbl 1149.60003 [3] R. F. Bass. Diffusions and elliptic operators . Springer, 1998. · Zbl 0914.60009 [4] R. Blumenthal, R. Getoor, and D. Ray. On the distribution of first hits for the symmetric stable processes. Transactions of the American Mathematical Society , 99(3):540-554, 1961. · Zbl 0118.13005 [5] R. Bhattacharya, V. K. Gupta, and E. Waymire. The hurst effect under trends. Journal of Applied Probability , pages 649-662, 1983. · Zbl 0526.60027 [6] P. Billingsley. Convergence of Probability Measures , Wiley Series in Probability and Statistics. Wiley, New York, 1999. · Zbl 0944.60003 [7] P. Caputo. Harmonic Crystals: Statistical Mechanics and Large Deviations . PhD thesis, TU Berlin 2000, , 2000. [8] J.-P. Chiles and P. Delfiner. Geostatistics: modeling spatial uncertainty , volume 497. John Wiley & Sons, 2009. [9] A. Capella, J. Dávila, L. Dupaigne, and Y. Sire. Regularity of radial extremal solutions for some non-local semilinear equations. Communications in Partial Differential Equations , 36(8):1353-1384, 2011. · Zbl 1231.35076 [10] S.-Y. A. Chang and M. d. M. González. Fractional Laplacian in conformal geometry. Advances in Mathematics , 226(2):1410-1432, 2011. · Zbl 1214.26005 [11] S. Cohen and J. Istas. Fractional fields and applications , volume 73. Springer, 2013. [12] Z.-Q. Chen and R. Song. Estimates on Green functions and Poisson kernels for symmetric stable processes. Mathematische Annalen , 312(3):465-501, 1998. · Zbl 0918.60068 [13] L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Communications in Partial Differential Equations , 32(8):1245-1260, 2007. · Zbl 1143.26002 [14] L. A. Caffarelli, S. Salsa, and L. Silvestre. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Inventiones Mathematicae , 171(2):425-461, 2008. · Zbl 1148.35097 [15] X. Cabré and J. Tan. Positive solutions of nonlinear problems involving the square root of the Laplacian. Advances in Mathematics , 224(5):2052-2093, 2010. · Zbl 1198.35286 [16] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. arXiv · Zbl 1252.46023 [17] R. Dobrushin. Gaussian and their subordinated self-similar random generalized fields. The Annals of Probability , 1-28, 1979. · Zbl 0392.60039 [18] S. Dodelson. Modern cosmology . Amsterdam (Netherlands): Academic Press, 2003. [19] B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas. Log-correlated Gaussian field: an overview. In preparation . · Zbl 1297.60033 [20] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Inventiones Mathematicae , 185(2):333-393, 2011. · Zbl 1226.81241 [21] J. Dubédat. SLE and the free field: partition functions and couplings. Journal of the American Mathematical Society , 22(4):995-1054, 2009. · Zbl 1204.60079 [22] R. M. Dudley. Real analysis and probability , volume 74. Cambridge University Press, 2002. · Zbl 1023.60001 [23] H. de Wijs. Statistics of ore distribution. part i: frequency distribution of assay values. Journal of the Royal Netherlands Geological and Mining Society , 13:365-375, 1951. [24] H. de Wijs. Statistics of ore distribution. part ii: theory of binomial distribution applied to sampling and engineering problems. Journal of the Royal Netherlands Geological and Mining Society , 15:125-24, 1953. [25] E. Dynkin. Markov processes and random fields. Bulletin of the American Mathematical Society , 3(3):975-999, 1980. · Zbl 0519.60046 [26] G. Friedlander and M. Joshi. Introduction to the theory of distributions. Cambridge University Press, Cambridge, 1998. [27] G. B. Folland. Real analysis: modern techniques and their applications , volume 361. Wiley, New York, 1999. · Zbl 0924.28001 [28] R. Gangolli. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré Sect. B (N.S.) , 3:121-226, 1967. · Zbl 0157.24902 [29] F. Gazzola, H.-C. Grunau, and G. Sweers. Polyharmonic boundary value problems: positivity preserving and nonlinear higher order elliptic equations in bounded domains . Number 1991. Springer, 2010. · Zbl 1239.35002 [30] L. Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition . Springer, Berlin, 2003. [31] S. Janson. Gaussian Hilbert spaces , volume 129. Cambridge University Press, 1997. · Zbl 0887.60009 [32] R. Kenyon. Dominos and the Gaussian free field. Annals of Probability , 1128-1137, 2001. · Zbl 1034.82021 [33] A. N. Kolmogorov. Wienersche spiralen und einige andere interessante kurven im hilbertschen raum. In CR (Dokl.) Acad. Sci. URSS , volume 26, pages 115-118, 1940. · Zbl 0022.36001 [34] G. Kristensson. Second order differential equations: special functions and their classification . Springer, 2010. · Zbl 1215.34002 [35] H.-H. Kuo. White noise distribution theory . CRC Press, 1996. · Zbl 0853.60001 [36] N. Kurt. Entropic repulsion for a class of Gaussian interface models in high dimensions. Stochastic Processes and Their Applications , 117(1):23-34, 2007. · Zbl 1120.82006 [37] N. Kurt. Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension. The Annals of Probability , 37(2):687-725, 2009. · Zbl 1166.60060 [38] P. D. Lax. Functional analysis. John Wiley und Sons, 2002. · Zbl 1009.47001 [39] N. S. Landkof and A. P. Doohovskoy. Foundations of modern potential theory . Springer-Verlag, Berlin, 1972. [40] M. P. Lévy. Le mouvement Brownien plan. American Journal of Mathematics , 62(1):487-550, 1940. · JFM 66.0619.02 [41] P. Lévy. Sur le mouvement Brownien dépendant de plusieurs paramètres. CR Acad. Sci. Paris , 220(420):3-1, 1945. [42] B. B. Mandelbrot. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics , 72(03):401-416, 1975. · Zbl 0329.76047 [43] P. McCullagh and D. Clifford. Evidence for conformal invariance of crop yields. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science , 462(2071):2119-2143, 2006. · Zbl 1149.92325 [44] P. McCullagh. What is a statistical model? Annals of Statistics , 1225-1267, 2002. · Zbl 1039.62003 [45] H. McKean, Jr. Brownian motion with a several-dimensional time. Theory of Probability & Its Applications , 8(4):335-354, 1963. · Zbl 0124.08702 [46] S. A. Molchanov and E. Ostrovskii. Symmetric stable processes as traces of degenerate diffusion processes. Theory of Probability & Its Applications , 14(1):128-131, 1969. · Zbl 0281.60091 [47] D. Mondal. Applying Dynkin’s isomorphism: an alternative approach to understand the Markov property of the de wijs process. Bernoulli , 2015. · Zbl 1339.60059 [48] P. Mörters and Y. Peres. Brownian motion , volume 30. Cambridge University Press, 2010. [49] J. Miller and S. Sheffield. Imaginary geometry III: reversibility of $$\mathrm{SLE}_{\kappa}$$ for $$\kappa\in(4,8)$$. 2012. arXiv · Zbl 1344.60078 [50] J. Miller and S. Sheffield. Imaginary geometry I: interacting SLEs. arXiv preprint , 2012. · Zbl 1336.60162 [51] J. Miller and S. Sheffield. Imaginary geometry II: reversibility of $$\mathrm{SLE}_{\kappa}(\rho_{1},\rho_{2})$$ for $$\kappa\in(0,4)$$. arXiv preprint , 2012. · Zbl 1344.60078 [52] J. Miller and S. Sheffield. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. arXiv preprint , 2013. · Zbl 1378.60108 [53] J. Munkres. Topology , 2nd edition. Prentice Hall, 1999. [54] B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Review , 10(4):422-437, 1968. · Zbl 0179.47801 [55] I. Melbourne and R. Zweimüller. Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems. arXiv preprint , 2013. · Zbl 1380.37064 [56] C. Newman. Self-similar random fields in mathematical physics. In Proceedings Measure Theory Conference . DeKalb, Illinois, 1980. · Zbl 0462.60098 [57] F. W. Olver. NIST handbook of mathematical functions . Cambridge University Press, 2010. · Zbl 1198.00002 [58] M. Ossiander and E. C. Waymire. Certain positive-definite kernels. Proceedings of the American Mathematical Society , 107(2):487-492, 1989. · Zbl 0677.60054 [59] B. Rider and B. Virág. The noise in the circular law and the Gaussian free field. arXiv preprint , 2006. [60] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. arXiv preprint , 2013. · Zbl 1316.60073 [61] D. Revuz and M. Yor. Continuous martingales and Brownian motion , volume 293. Springer Verlag, 1999. · Zbl 0917.60006 [62] H. Sakagawa. Entropic repulsion for a Gaussian lattice field with certain finite range interaction. Journal of Mathematical Physics , 44:2939, 2003. · Zbl 1062.82013 [63] H. Sakagawa. On the free energy of a Gaussian membrane model with external potentials. Journal of Statistical Physics , 147(1):18-34, 2012. · Zbl 1243.82028 [64] S. Sheffield. Gaussian free fields for mathematicians. Probability Theory and Related Fields , 139(3-4):521-541, 2007. · Zbl 1132.60072 [65] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. arXiv preprint , 2010. · Zbl 1388.60144 [66] L. Silvestre. Regularity of the obstacle problem for a fractional power of the Laplace operator. Communications on Pure and Applied Mathematics , 60(1):67-112, 2007. · Zbl 1141.49035 [67] B. Simon. Functional integration and quantum physics , volume 86. Academic Press, 1979. · Zbl 0434.28013 [68] A. Skorokhod. Limit theorems for stochastic processes. Theory of Probability & Its Applications , 1(3):261-290, 1956. [69] A. Skorokhod. Limit theorems for stochastic processes with independent increments. Theory of Probability & Its Applications , 2(2):138-171, 1957. · Zbl 0097.13001 [70] O. Schramm and S. Sheffield. A contour line of the continuum Gaussian free field. Probability Theory and Related Fields , 1-34, 2010. · Zbl 1331.60090 [71] E. M. Stein. Singular integrals and differentiability properties of functions , volume 2. Princeton University Press, 1970. · Zbl 0207.13501 [72] E. M. Stein and G. L. Weiss. Introduction to Fourier analysis on Euclidean spaces (PMS-32) , volume 1. Princeton University Press, 1971. [73] X. Sun and W. Wu. Uniform spanning forests and the bi-Laplacian Gaussian field. arXiv preprint , 2013. [74] T. Tao. An epsilon of room, I: Real analysis , volume 117 of Graduate Studies in Mathematics . American Mathematical Society, Providence, RI, 2010. Pages from year three of a mathematical blog. · Zbl 1216.46002 [75] H. Triebel. Theory of function spaces , volume 78 of Monographs in Mathematics . Birkhäuser Verlag, Basel, 1983. [76] E. Wong. Stochastic processes in information and dynamical systems . New York: McGraw-Hill, 1970. [77] Y. Xiao. Recent developments on fractal properties of Gaussian random fields. In Further Developments in Fractals and Related Fields , pages 255-288. Springer, 2013. · Zbl 1284.60101 [78] A. M. Yaglom. Some classes of random fields in n-dimensional space, related to stationary random processes. Theory of Probability & Its Applications , 2(3):273-320, 1957.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.