×

zbMATH — the first resource for mathematics

Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. (English) Zbl 1333.82025
Summary: Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system near the relativistic Maxwellian are constructed based on an approach by combining the compensating function and energy method. In addition, an exponential rate in time of the solution to its equilibrium is obtained.

MSC:
82D10 Statistical mechanics of plasmas
35Q84 Fokker-Planck equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Bostan, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case,, Kinet. Relat. Models, 1, 139, (2008) · Zbl 1185.35287
[2] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions,, J. Func. Anal., 111, 239, (1993) · Zbl 0777.35059
[3] A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation,, Math. Methods Appl. Sci., 21, 985, (1998) · Zbl 0911.35090
[4] J.-A. Carrillo, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in \(L^p\) spaces,, Math. Methods Appl. Sci., 18, 825, (1995) · Zbl 0829.35096
[5] J.-A. Carrillo, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system,, J. Func. Anal., 141, 99, (1996) · Zbl 0873.35066
[6] M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian,, Math. Models Methods Appl. Sci., 21, 1007, (2011) · Zbl 1244.35146
[7] R. DiPerna, Global weak solutions of kinetic equations,, Rend. Sem. Mat. Univ. Politec. Torino, 46, 259, (1988) · Zbl 0813.35087
[8] R.-J. Duan, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324, 1, (2013) · Zbl 1285.35115
[9] R.-J. Duan, Optimal time decay of the Vlasov-Poisson-Boltzmann system in \(R^3\),, Arch. Ration. Mech. Anal., 199, 291, (2011) · Zbl 1232.35169
[10] R.-J. Duan, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case,, J. Differential Equations, 252, 6356, (2012) · Zbl 1247.35174
[11] R. T. Glassey, <em>The Cauchy Problem in Kinetic Theory</em>,, Society for Industrial and Applied Mathematics (SIAM), (1996) · Zbl 0858.76001
[12] Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., 55, 1104, (2002) · Zbl 1027.82035
[13] L. Hsiao, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system,, Commun. Pure Appl. Anal., 7, 579, (2008) · Zbl 1144.35366
[14] H.-J Hwang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian,, Discrete Contin. Dyn. Syst. Ser. B, 18, 681, (2013) · Zbl 1277.35327
[15] S. Kawashima, The Boltzmann equation and thirteen moments,, Japan J. Appl. Math., 7, 301, (1990) · Zbl 0702.76090
[16] R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity,, Math. Meth. Appl. Sci., 21, 1287, (1998) · Zbl 0911.35091
[17] S.-Q. Liu, Optimal large-time decay of the relativistic Landau-Maxwell system,, J. Differential Equations, 256, 832, (2014) · Zbl 1320.35344
[18] B. O’Dwyer, On classical solutions of the Vlasov-Poisson-Fokker-Planck system,, Indiana Univ. Math. J., 39, 105, (1990) · Zbl 0674.60097
[19] G. Rein, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions,, J. Differential Equations, 99, 59, (1992) · Zbl 0810.35090
[20] R.-M. Strain, Stability of the relativistic Maxwellian in a collisional plasma,, Comm. Math. Phys., 251, 263, (2004) · Zbl 1113.82070
[21] H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems,, J. Math. Anal. Appl., 160, 525, (1991) · Zbl 0764.35024
[22] C. Villani, Hypocoercivity,, Memoirs Amer. Math. Soc., 202, (2009) · Zbl 1197.35004
[23] T. Yang, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space,, J. Differential Equations, 248, 1518, (2010) · Zbl 1397.35166
[24] T. Yang, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system,, SIAM J. Math. Anal., 42, 459, (2010) · Zbl 1219.35302
[25] T. Yang, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system,, Comm. Math. Phys., 268, 569, (2006) · Zbl 1129.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.