×

zbMATH — the first resource for mathematics

Heavy tails in Calabi-Yau moduli spaces. (English) Zbl 1333.81223
Summary: We study the statistics of the metric on Kähler moduli space in compactifications of string theory on Calabi-Yau hypersurfaces in toric varieties. We find striking hierarchies in the eigenvalues of the metric and of the Riemann curvature contribution to the Hessian matrix: both spectra display heavy tails. The curvature contribution to the Hessian is non-positive, suggesting a reduced probability of metastability compared to cases in which the derivatives of the Kähler potential are uncorrelated. To facilitate our analysis, we have developed a novel triangulation algorithm that allows efficient study of hypersurfaces with \(h^{1,1}\) as large as 25, which is difficult using algorithms internal to packages such as Sage. Our results serve as input for statistical studies of the vacuum structure in flux compactifications, and of the distribution of axion decay constants in string theory.

MSC:
81T10 Model quantum field theories
58D27 Moduli problems for differential geometric structures
Software:
PALP; SageMath; TOPCOM
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Douglas, MR, The statistics of string/M theory vacua, JHEP, 05, 046, (2003)
[2] Graña, M., Flux compactifications in string theory: a comprehensive review, Phys. Rept., 423, 91, (2006)
[3] Douglas, MR; Kachru, S., Flux compactification, Rev. Mod. Phys., 79, 733, (2007)
[4] F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [INSPIRE].
[5] Ashok, S.; Douglas, MR, Counting flux vacua, JHEP, 01, 060, (2004)
[6] Denef, F.; Douglas, MR, Distributions of flux vacua, JHEP, 05, 072, (2004)
[7] Denef, F.; Douglas, MR, Distributions of nonsupersymmetric flux vacua, JHEP, 03, 061, (2005)
[8] Douglas, MR; Shiffman, B.; Zelditch, S., Critical points and supersymmetric vacua, Commun. Math. Phys., 252, 325, (2004)
[9] Ferrari, F.; Klevtsov, S.; Zelditch, S., Random geometry, quantum gravity and the Kähler potential, Phys. Lett., B 705, 375, (2011)
[10] Ferrari, F.; Klevtsov, S.; Zelditch, S., Random Kähler metrics, Nucl. Phys., B 869, 89, (2013)
[11] Ferrari, F.; Klevtsov, S.; Zelditch, S., Simple matrix models for random Bergman metrics, J. Stat. Mech., 2012, (2012)
[12] Wilson, P., The Kähler cone on Calabi-Yau threefolds, Invent. Math., 107, 561, (1992)
[13] D.R. Morrison, Compactifications of moduli spaces inspired by mirror symmetry, in Journées de Géométrie Algébrique dOrsay (Juillet 1992\()\), Astérisque 218, France (1993), pg. 243 [alg-geom/9304007].
[14] D.R. Morrison, Beyond the Kähler cone, in Proc. of the Hirzebruch 65 Conference on Algebraic Geometry, M. Teicher ed., Israel Math. Conf. Proc. 9, Israel (1996), pg. 361 [alg-geom/9407007].
[15] Grassi, A.; Morrison, DR, Automorphisms and the Kähler cone of certain Calabi-Yau manifolds, Duke Math. J., 71, 831, (1993)
[16] Marsh, D.; McAllister, L.; Wrase, T., The wasteland of random supergravities, JHEP, 03, 102, (2012)
[17] Bachlechner, TC, On Gaussian random supergravity, JHEP, 04, 054, (2014)
[18] M. Kreuzer and H. Skarke, Calabi-Yau data, http://hep.itp.tuwien.ac.at/∼kreuzer/CY/.
[19] Gray, J.; etal., Calabi-Yau manifolds with large volume vacua, Phys. Rev., D 86, 101901, (2012)
[20] Balasubramanian, V.; Berglund, P.; Conlon, JP; Quevedo, F., Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP, 03, 007, (2005)
[21] Banks, T.; Dine, M.; Fox, PJ; Gorbatov, E., On the possibility of large axion decay constants, JCAP, 06, 001, (2003)
[22] Svrček, P.; Witten, E., Axions in string theory, JHEP, 06, 051, (2006)
[23] Wigner, EP, On the statistical distribution of the widths and spacings of nuclear resonance levels, Math. Proc. Cambridge, 47, 790, (1951)
[24] Wigner, EP, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math., 62, 548, (1955)
[25] E.P. Wigner, Results and theory of resonance absorption, in Gatlinburg conference on neutron physics by time-of-flight, Oak Ridge National Laboratory, U.S.A. (1957), pg. 59.
[26] E.P. Wigner, Statistical properties of real symmetric matrices with many dimensions, in Proceedings of the fourth Canadian mathematical congress, University of Toronto Press, Toronto Canada (1957), pg. 174.
[27] Wishart, J., The generalised product moment distribution in samples from a normal multivariate population, Biometrika, 20A, 32, (1928)
[28] Kachru, S.; Kallosh, R.; Linde, AD; Trivedi, SP, De Sitter vacua in string theory, Phys. Rev., D 68, 046005, (2003)
[29] Grimm, TW; Louis, J., The effective action of N =1 Calabi-Yau orientifolds, Nucl. Phys., B 699, 387, (2004)
[30] Blumenhagen, R.; Körs, B.; Lüst, D.; Stieberger, S., Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept., 445, 1, (2007)
[31] Conlon, JP, Moduli stabilisation and applications in IIB string theory, Fortsch. Phys., 55, 287, (2007)
[32] Gao, X.; Shukla, P., On classifying the divisor involutions in Calabi-Yau threefolds, JHEP, 11, 170, (2013)
[33] Kreuzer, M.; Skarke, H., PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun., 157, 87, (2004)
[34] A.P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALPa user manual, arXiv:1205.4147 [INSPIRE].
[35] Dine, M.; Seiberg, N., Is the superstring weakly coupled?, Phys. Lett., B 162, 299, (1985)
[36] Rummel, M.; Sumitomo, Y., Probability of vacuum stability in type IIB multi-Kähler moduli models, JHEP, 12, 003, (2013)
[37] J. Abrevaya and W. Jiang, A nonparametric approach to measuring and testing curvature, J. Business Econ. Stat.23 (205) 1.
[38] Wilson, PMH, Sectional curvatures of Kähler moduli, Math. Ann., 330, 631, (2004)
[39] Ooguri, H.; Vafa, C., On the geometry of the string landscape and the swampland, Nucl. Phys., B 766, 21, (2007)
[40] Trenner, T.; Wilson, P., Asymptotic curvature of moduli spaces for Calabi-Yau threefolds, J. Geom. Anal., 21, 409, (2011)
[41] Kanazawa, A.; Wilson, P., Trilinear forms and Chern classes of Calabi-Yau threefolds, Osaka J. Math., 51, 203, (2014)
[42] Phong, D.; Sturm, J., Lectures on stability and constant scalar curvature, Curr. Devel. Math., 2007, 101, (2009)
[43] Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; Kaloper, N.; March-Russell, J., String axiverse, Phys. Rev., D 81, 123530, (2010)
[44] D. Baumann and L. McAllister, Inflation and string theory, arXiv:1404.2601 [INSPIRE].
[45] Dimopoulos, S.; Kachru, S.; McGreevy, J.; Wacker, JG, N -flation, JCAP, 08, 003, (2008)
[46] Easther, R.; McAllister, L., Random matrices and the spectrum of N-flation, JCAP, 05, 018, (2006)
[47] T.C. Bachlechner, M. Dias, J. Frazer and L. McAllister, A new angle on chaotic inflation, arXiv:1404.7496 [INSPIRE].
[48] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP01 (2005) 005 [hep-ph/0409138] [INSPIRE].
[49] Farquet, D.; Scrucca, CA, Scalar geometry and masses in Calabi-Yau string models, JHEP, 09, 025, (2012)
[50] Witten, E., Phases of N =2 theories in two-dimensions, Nucl. Phys., B 403, 159, (1993)
[51] B.R. Greene, String theory on Calabi-Yau manifolds, hep-th/9702155 [INSPIRE].
[52] D. Cox and S. Katz, Mirror symmetry and algebraic geometry, American Mathematical Society, U.S.A. (2000).
[53] K. Hori et al., Mirror symmetry, American Mathematical Society and Clay Mathematics Institute, U.S.A. (2003).
[54] D. Cox, What is a toric variety?, unpublished lecture notes available at http://www3.amherst.edu/∼dacox/.
[55] D.A. Cox, J.B. Little and H.K. Schenck, Toric varieties, American Mathematical Society, U.S.A. (2011).
[56] Batyrev, VV, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom., 3, 493, (1994)
[57] V. Braun, The Mori cone of a Calabi-Yau space from toric geometry, master’s thesis, The University of Texas at Austin, Austin U.S.A. (1998).
[58] J. Rambau, Topcom: triangulations of point configurations and oriented matroids, in Mathematical softwareICMS 2002, A.M. Cohen, X.-S. Gao and N. Takayama eds., World Scientific, Singapore (2002), pg. 330.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.