×

zbMATH — the first resource for mathematics

On the singular behaviour of scattering amplitudes in quantum field theory. (English) Zbl 1333.81149
Summary: We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.

MSC:
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
Software:
GoSam; HELAC-1LOOP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berger, CF; etal., Precise predictions for W +3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[2] Melnikov, K.; Zanderighi, G., W +3 jet production at the LHC as a signal or background, Phys. Rev., D 81, 074025, (2010)
[3] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: A study of pp → \( t\overline{t} \) + 2 jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[4] Denner, A.; Dittmaier, S.; Kallweit, S.; Pozzorini, S., NLO QCD corrections to wwbb production at hadron colliders, Phys. Rev. Lett., 106, 052001, (2011)
[5] Campanario, F.; Kerner, M.; Ninh, LD; Zeppenfeld, D., WZ production in association with two jets at next-to-leading order in QCD, Phys. Rev. Lett., 111, 052003, (2013)
[6] Bern, Z.; etal., Next-to-leading order W +5-jet production at the LHC, Phys. Rev., D 88, 014025, (2013)
[7] Bevilacqua, G.; etal., Helac-nlo, Comput. Phys. Commun., 184, 986, (2013)
[8] Cullen, G.; etal., Gosam-2.0: a tool for automated one-loop calculations within the standard model and beyond, Eur. Phys. J., C 74, 3001, (2014)
[9] Alwall, J.; etal., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP, 07, 079, (2014)
[10] Bolzoni, P.; Maltoni, F.; Moch, S-O; Zaro, M., Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett., 105, 011801, (2010)
[11] Catani, S.; Ferrera, G.; Grazzini, M., W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP, 05, 006, (2010)
[12] Catani, S.; Cieri, L.; Ferrera, G.; Florian, D.; Grazzini, M., Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett., 103, 082001, (2009)
[13] Anastasiou, C.; Dissertori, G.; Stöckli, F., NNLO QCD predictions for the H →WW →ℓνℓν signal at the LHC, JHEP, 09, 018, (2007)
[14] Czakon, M.; Fiedler, P.; Mitov, A., Total top-quark pair-production cross section at hadron colliders through \(O\)(\(α\)_{\(S\)}\^{4}), Phys. Rev. Lett., 110, 252004, (2013)
[15] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].
[16] Catani, S.; Seymour, MH, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett., B 378, 287, (1996)
[17] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[18] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[19] Catani, S.; Grazzini, M., An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett., 98, 222002, (2007)
[20] Catani, S.; Gleisberg, T.; Krauss, F.; Rodrigo, G.; Winter, J-C, From loops to trees by-passing feynman’s theorem, JHEP, 09, 065, (2008) · Zbl 1245.81117
[21] Bierenbaum, I.; Catani, S.; Draggiotis, P.; Rodrigo, G., A tree-loop duality relation at two loops and beyond, JHEP, 10, 073, (2010) · Zbl 1291.81381
[22] Bierenbaum, I.; Buchta, S.; Draggiotis, P.; Malamos, I.; Rodrigo, G., Tree-loop duality relation beyond simple poles, JHEP, 03, 025, (2013)
[23] Bierenbaum, I.; Draggiotis, P.; Buchta, S.; Chachamis, G.; Malamos, I.; Rodrigo, G., News on the loop-tree duality, Acta Phys. Polon., B 44, 2207, (2013) · Zbl 1371.81125
[24] Feynman, RP, Quantum theory of gravitation, Acta Phys. Polon., 24, 697, (1963)
[25] R.P. Feynman, Closed Loop And Tree Diagrams, in Magic Without Magic, J.R. Klauder ed., Freeman, San Francisco, (1972), pg. 355, in Selected papers of Richard Feynman, L.M. Brown ed., World Scientific, Singapore, (2000) pg. 867.
[26] Sterman, GF, Mass divergences in annihilation processes. I. origin and nature of divergences in cut vacuum polarization diagrams, Phys. Rev., D 17, 2773, (1978)
[27] Gong, W.; Nagy, Z.; Soper, DE, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D 79, 033005, (2009)
[28] Nagy, Z.; Soper, DE, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D 74, 093006, (2006)
[29] Kramer, M.; Soper, DE, Next-to-leading order numerical calculations in Coulomb gauge, Phys. Rev., D 66, 054017, (2002)
[30] Soper, DE, Choosing integration points for QCD calculations by numerical integration, Phys. Rev., D 64, 034018, (2001)
[31] Soper, DE, Techniques for QCD calculations by numerical integration, Phys. Rev., D 62, 014009, (2000)
[32] Soper, DE, QCD calculations by numerical integration, Phys. Rev. Lett., 81, 2638, (1998)
[33] Becker, S.; Weinzierl, S., Direct contour deformation with arbitrary masses in the loop, Phys. Rev., D 86, 074009, (2012)
[34] Becker, S.; Weinzierl, S., Direct numerical integration for multi-loop integrals, Eur. Phys. J., C 73, 2321, (2013)
[35] Mandelstam, S., Unitarity condition below physical thresholds in the normal and anomalous cases, Phys. Rev. Lett., 4, 84, (1960) · Zbl 0089.21603
[36] Rechenberg, H.; Sudarshan, ECG, Analyticity in quantum field theory. 1. the triangle graph revisited, Nuovo Cim., A 12, 541, (1972)
[37] Catani, S.; Florian, D.; Rodrigo, G., The triple collinear limit of one loop QCD amplitudes, Phys. Lett., B 586, 323, (2004)
[38] Sborlini, GFR; Florian, D.; Rodrigo, G., Double collinear splitting amplitudes at next-to-leading order, JHEP, 01, 018, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.