×

zbMATH — the first resource for mathematics

Differential hierarchy and additional grading of knot polynomials. (English. Russian original) Zbl 1333.57008
Theor. Math. Phys. 179, No. 2, 509-542 (2014); translation from Teor. Mat. Fiz. 179, No. 2, 147-188 (2014).
Authors’ abstract: Colored knot polynomials have a special Z-expansion in certain combinations of differentials, which depend on the representation. The expansion coefficients are functions of three variables \(A\), \(q\), and \(t\) and can be regarded as new distinguished coordinates on the space of knot polynomials, analogous to the coefficients of the alternative character expansion. These new variables decompose especially simply when the representation is embedded into a product of fundamental representations. The recently proposed fourth grading is seemingly a simple redefinition of these new coordinates, elegant, but in no way distinguished. If this is so, then it does not provide any new independent knot invariants, but it can instead be regarded as one more piece of evidence in support of a hidden differential hierarchy (Z-expansion) structure behind the knot polynomials.

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. W. Alexander, Trans. Amer. Math. Soc., 30, 275–306 (1928); J. H. Conway, ”An enumeration of knots and links, and some of their algebraic properties,” in: Computational Problems in Abstract Algebra (J. Leech, ed.), Pergamon, Oxford (1970), pp. 329–358; V. F. R. Jones, Invent. Math., 72, 1–25 (1983); Bull. Amer. Math. Soc., n.s., 12, 103–111 (1985); Ann. Math. (2), 126, 335–388 (1987); L. Kauffman, Topology, 26, 395–407 (1987); P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, and A. Ocneanu, Bull. Amer. Math. Soc., n.s., 12, 239–246 (1985); J. H. Przytycki and K. P. Traczyk, Kobe J. Math., 4, 115–139 (1987). · doi:10.1090/S0002-9947-1928-1501429-1
[2] S.-S. Chern and J. Simons, Ann. Math. (2), 99, 48–69 (1974). · Zbl 0283.53036 · doi:10.2307/1971013
[3] A. S. Schwarz, ”New topological invariants arising in the theory of quantized fields,” in: International Conference on Topology (Abstracts Part II), Math. Institute, Aserbaijan Acad. Sci., Baku (1987); E. Witten, Commun. Math. Phys., 121, 351–399 (1989).
[4] R. Gopakumar and C. Vafa, Adv. Theoret. Math. Phys., 3, 1415–1443 (1999); arXiv:hep-th/9811131v1 (1998); H. Ooguri and C. Vafa, Nucl. Phys. B, 577, 419–438 (2000); arXiv:hep-th/9912123v3 (1999); J. Labastida and M. Mariño, Commun. Math. Phys., 217, 423–449 (2001); arXiv:hep-th/0004196v3 (2000); M. Mariño and C. Vafa, ”Framed knots at large N,” arXiv:hep-th/0108064v1 (2001); S. Gukov, A. Schwarz, and C. Vafa, Lett. Math. Phys., 74, 53–74 (2005); arXiv:hep-th/0412243v3 (2004).
[5] M. Khovanov, Duke Math. J., 101, 359–426 (2000); arXiv:math/9908171v2 (1999); Exp. Math., 12, 365–374 (2003); arXiv:math/0201306v1 (2002); J. Knot Theory Ramifications, 14, 111–130 (2005); arXiv:math/0302060v1 (2003); Algebr. Geom. Topol., 4, 1045–1081 (2004); arXiv:math/0304375v2 (2003). · Zbl 0960.57005 · doi:10.1215/S0012-7094-00-10131-7
[6] M. Khovanov and L. Rozhansky, Fund. Math., 199, 1–91 (2008); arXiv:math.QA/0401268v2 (2004); Geom. Topol., 12, 1387–1425 (2008); arXiv:math.QA/0505056v2 (2005); D. Bar-Natan, Algebr. Geom. Topol., 2, 337–370 (2002); arXiv:math/0201043v3 (2002). · Zbl 1145.57009 · doi:10.4064/fm199-1-1
[7] V. Dolotin and A. Morozov, JHEP, 1301, 065 (2013); arXiv:1208.4994v1 [hep-th] (2012); J. Phys.: Conf. Ser., 411, 012013 (2013); arXiv:1209.5109v1 [math-ph] (2012). · Zbl 1342.57001 · doi:10.1007/JHEP01(2013)065
[8] N. M. Dunfield, S. Gukov, and J. Rasmussen, Exp. Math., 15, 129–159 (2006); arXiv:math/0505662v2 (2005). · Zbl 1118.57012 · doi:10.1080/10586458.2006.10128956
[9] H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, Internat. J. Mod. Phys. A, 27, 1250099 (2012); arXiv:1204.4785v4 [hep-th] (2012); 28, 1340009 (2013); A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, Nucl. Phys. B, 868, 271–313 (2013); arXiv:1207.0279v2 [hep-th] (2012); A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, Adv. High Enegry Phys., 13, 931830 (2013); arXiv:1304.1486v1 [hep-th] (2013). · Zbl 1260.81134 · doi:10.1142/S0217751X12500996
[10] E. Guadagnini, M. Martellini, and M. Mintchev, ”Chern-Simons field theory and quantum groups,” in: Quantum groups (Lect. Notes Phys., Vol. 370, H.-D. Doebner and J.-D. Hennig, eds.), Springer, Berlin, pp. 307–317; Phys. Lett. B, 235, 275–281 (1990); N. Yu. Reshetikhin and V. G. Turaev, Commun. Math. Phys., 127, 1–26 (1990); A. Morozov and A. Smirnov, Nucl. Phys. B, 835, 284–313 (2010); arXiv:1001.2003v2 [hep-th] (2010). · Zbl 0722.57003
[11] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, and A. Smirnov, JHEP, 1303, 021 (2013); arXiv: 1106.4305v3 [hep-th] (2011). · Zbl 1342.57004 · doi:10.1007/JHEP03(2013)021
[12] A. Mironov, A. Morozov, and And. Morozov, ”Character expansion for HOMFLY polynomials: I. Integrability and difference equations,” in: Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, and E. Scheidegger, eds.), World Scientific, Singapore (2013), pp. 101–118; arXiv:1112.5754v1 [hep-th] (2011).
[13] M. Aganagic and Sh. Shakirov, ”Knot homology from refined Chern-Simons theory,” arXiv:1105.5117v2 [hep-th] (2011); ”Refined Chern-Simons theory and topological string,” arXiv:1210.2733v1 [hep-th] (2012).
[14] I. Cherednik, ”Jones polynomials of torus knots via DAHA,” arXiv:1111.6195v10 [math.QA] (2011). · Zbl 1329.57019
[15] N. Carqueville and D. Murfet, Algebr. Geom. Topol., 14, 489–537 (2014); arXiv:1108.1081v3 [math.QA] (2011); A. Oblomkov, J. Rasmussen, and V. Shende, ”The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link,” arXiv:1201.2115v1 [math.AG] (2012); E. Gorsky, A. Oblomkov, J. Rasmussen, and V. Shende, ”Torus knots and the rational DAHA,” arXiv:1207.4523v1 [math.RT] (2012). · Zbl 1326.57024 · doi:10.2140/agt.2014.14.489
[16] S. Gukov and M. Stosic, ”Homological algebra of knots and BPS states,” arXiv:1112.0030v2 [hep-th] (2011).
[17] A. Mironov, A. Morozov, and And. Morozov, ”Evolution method and ”differential hierarchy” of colored knot polynomials,” in: Nonlinear and Modern Mathematical Physics (AIP Conf. Proc., Vol. 1562, W.-X. Ma and D. Kaup, eds.), AIP, Melville, NY (2013), pp. 123–155; arXiv:1306.3197v1 [hep-th] (2013).
[18] E. Gorsky, ”q, t-Catalan numbers and knot homology,” in: Zeta Functions in Algebra and Geometry (Contemp. Math., Vol. 566, A. Campillo, ed.), Amer. Math. Soc., Providence, R. I. (2012), pp. 213–232; arXiv:1003.0916v3 [math.AG] (2010).
[19] A. Negut, ”Moduli of flags of sheaves on P 2 and their K-theory,” arXiv:1209.4242v3 [math.AG] (2012); E. Gorsky and A. Negut, ”Refined knot invariants and Hilbert schemes,” arXiv:1304.3328v2 [math.RT] (2013).
[20] H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, JHEP, 1207, 131 (2012); arXiv:1203.5978v5 [hep-th] (2012). · Zbl 1397.57012 · doi:10.1007/JHEP07(2012)131
[21] S. Nawata, P. Ramadevi, Zodinmawia, and X. Sun, JHEP, 1211, 157 (2012); arXiv:1209.1409v4 [hep-th] (2012); H. Fuji, S. Gukov, M. Stosic, and P. Sulkowski, ”3d analogs of Argyres-Douglas theories and knot homologies,” arXiv:1209.1416v1 [hep-th] (2012). · Zbl 1397.57029 · doi:10.1007/JHEP11(2012)157
[22] H. Fuji, S. Gukov, and P. Sulkowski, ”Volume conjecture: Refined and categorified,” arXiv:1203.2182v1 [hep-th] (2012).
[23] A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, ”Knot polynomials in the first non-symmetric representation,” arXiv:1211.6375v1 [hep-th] (2012). · Zbl 1285.81035
[24] E. Gorsky, S. Gukov, and M. Stosic, ”Quadruply-graded colored homology of knots,” arXiv:1304.3481v1 [math.QA] (2013).
[25] A. Mironov, A. Morozov, and And. Morozov, JHEP, 1203, 034 (2012); arXiv:1112.2654v2 [math.QA] (2011). · Zbl 1309.81114 · doi:10.1007/JHEP03(2012)034
[26] R. Gelca, Math. Proc. Cambridge Philos. Soc., 133, 311–323 (2002); arXiv:math/0004158v1 (2000); R. Gelca and J. Sain, J. Knot Theory Ramifications, 12, 187–201 (2003); arXiv:math/0201100v1 (2002); S. Gukov, Commun. Math. Phys., 255, 577–627 (2005); arXiv:hep-th/0306165v1 (2003); S. Garoufalidis, ”On the characteristic and deformation varieties of a knot,” in: Proceedings of the Casson Fest (Geom. Topol. Monogr., Vol. 7, C. Gordon and Y. Rieck, eds.), Geometry and Topology, Coventry (2004), pp. 291–309; arXiv:math/0306230v4 (2003); H. Fuji, S. Gukov, and P. Sułkowski, ”Super-A-polynomial for knots and BPS states,” arXiv:1205.1515v2 [hep-th] (2012). · Zbl 1017.57002 · doi:10.1017/S0305004102006047
[27] A. Mironov and A. Morozov, ”Equations on knot polynomials and 3d/5d duality,” in: The Sixth International School on Field Theory and Gravitation – 2012 (AIP Conf. Proc., Vol. 1483, W. A. Rodrigues Jr., R. Kerner, G. O. Pires, and C. Pinheiro, eds.), Vol. 1483, AIP, Melville, N. Y. (2012), pp. 189–211; arXiv:1208.2282v1 [hep-th] (2012). · Zbl 1291.81260
[28] M. Rosso and V. Jones, J. Knot Theory Ramifications, 2, 97–112 (1993); X.-S. Lin and H. Zheng, Trans. Amer. Math. Soc., 362, 1–18 (2010); arXiv:math/0601267v1 (2006); S. Stevan, Ann. Henri Poincaré, 11, 1201–1224 (2010); arXiv:1003.2861v2 [hep-th] (2010); A. Brini, B. Eynard, and M. Mariño, Ann. Henri Poincaré, 13, 1873–1910 (2012); arXiv:1105.2012v1 [hep-th] (2011). · Zbl 0787.57006 · doi:10.1142/S0218216593000064
[29] A. Morozov, JHEP, 1212, 116 (2012); arXiv:1208.3544v1 [hep-th] (2012); ”The first-order deviation of superpolynomial in an arbitrary representation from the special polynomial,” arXiv:1211.4596v2 [hep-th] (2012); JETP Lett., 97, 171–172 (2013). · Zbl 1397.81104 · doi:10.1007/JHEP12(2012)116
[30] A. S. Anokhina and A. A. Morozov, Theor. Math. Phys., 178, 1–58 (2014). · Zbl 1318.81055 · doi:10.1007/s11232-014-0129-2
[31] M. Kontsevich, ”Vassiliev’s knot invariants,” in: I. M. Gel’ fand Seminar (Adv. Sov. Math., Vol. 16, Part 2, S. I. Gel’fand and S. G. Gindikin, eds.), Amer. Math. Soc., Providence, R. I. (1993), pp. 137–150; M. Alvarez, J. M. F. Labastida, and E. Perez, Nucl. Phys. B, 488, 677–718 (1997); arXiv:hep-th/9607030v1 (1996); S. Chmutov, S. Duzhin, and J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge Univ. Press, Cambridge (2012); arXiv:1103.5628v3 [math.GT] (2011).
[32] A. Mironov, A. Morozov, and A. Sleptsov, Theor. Math. Phys., 177, 1435–1470 (2013); arXiv:1303.1015v1 [hep-th] (2013); A. Mironov, A. Morozov, and A. Sleptsov, Eur. Phys. J. C, 73, 2492 (2013); arXiv:1304.7499v1 [hep-th] (2013); A. Morozov, ”Integrability in non-perturbative QFT,” in: Nonlinear and Modern Mathematical Physics (AIP Conf. Proc., Vol. 1562, W.-X. Ma and D. Kaup, eds.), AIP, Melville, N. Y. (2013), pp. 167–176; arXiv:1303.2578v1 [hep-th] (2013). · Zbl 1336.57022 · doi:10.1007/s11232-013-0115-0
[33] A. Mironov, A. Morozov, Sh. Shakirov, and A. Sleptsov, JHEP, 1212, 70 (2012); arXiv:1201.3339v2 [hep-th] (2012). · Zbl 1348.81391 · doi:10.1007/JHEP05(2012)070
[34] A. Mironov, A. Morozov, and Sh. Shakirov, J. Phys. A, 45, 355202 (2012); arXiv:1203.0667v1 [hep-th] (2012). · Zbl 1247.81397 · doi:10.1088/1751-8113/45/35/355202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.