×

zbMATH — the first resource for mathematics

Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. (English) Zbl 1333.34007
Summary: This paper presents two new lemmas related to the Caputo fractional derivatives, when \(\alpha\in(0,1]\), for the case of general quadratic forms and for the case where the trace of the product of a rectangular matrix and its transpose appear. Those two lemmas allow using general quadratic Lyapunov functions and the trace of a matrix inside a Lyapunov function respectively, in order to apply the fractional-order extension of Lyapunov direct method, to analyze the stability of fractional order systems (FOS). Besides, the paper presents a theorem for proving uniform stability in the sense of Lyapunov for fractional order systems. The theorem can be seen as a complement of other methods already available in the literature. The two lemmas and the theorem are applied to the stability analysis of two fractional order model reference adaptive control (FOMRAC) schemes, in order to prove the usefulness of the results.

MSC:
34A08 Fractional ordinary differential equations and fractional differential inclusions
34D20 Stability of solutions to ordinary differential equations
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and applications of fractional differential equations, (2006), Elsevier · Zbl 1092.45003
[2] Sabatier, J.; Aoun, M.; Oustaloup, A.; Gréegoire, G.; Ragot, F.; Roy, P., Fractional system identification for lead acid battery state of charge estimation, Signal Process, 86, 2645-2657, (2006) · Zbl 1172.93399
[3] Gabano, J.-D.; Poinot, T., Fractional modelling and identification of thermal systems, Signal Process, 91, 531-541, (2011) · Zbl 1203.94029
[4] Lin J, Poinot T, Trigeassou JC, Kabbaj H, Faucher J, Modélisation et identification d’ordre non entire d’une machine asynchrone. In: Conférence Internationale Francophone d’Automatique; 2000.
[5] Zamani, M.; Karimi-Ghartemani, M.; Sadati, N.; Parniani, M., Design of a fractional order PID controller for an AVR using particle swarm optimization, Control Eng Pract, 17, 1380-1387, (2009)
[6] Ladaci, S.; Loiseau, J. J.; Charef, A., Fractional order adaptive high-gain controllers for a class of linear systems, Commun Nonlinear Sci Numer Simul, 13, 707-714, (2008) · Zbl 1221.93128
[7] El Figuigui O, Elalami N, Application of fractional adaptive High-Gain controller to a LEO (Low Earth Orbit) satellite. In: International conference on computers industrial engineering; 2009. p. 1850-56.
[8] YaLi H, RuiKun G, Application of fractional-order model reference adaptive control on industry boiler burning system. In: International conference on intelligent computation technology and automation (ICICTA) 2010, vol. 1. p. 750-53.
[9] Duarte-Mermoud MA, Aguila-Camacho N, Fractional order adaptive control of simple systems. In: Narendra K, editor. Fifteenth yale workshop on adaptive and learning systems; 2011. p. 57-62.
[10] Duarte-Mermoud MA, Aguila-Camacho N, Some useful results in fractional adaptive control. In: Narendra K, editor. Sixteenth yale workshop on adaptive and learning systems; 2013. p. 51-6.
[11] Aguila-Camacho, N.; Duarte-Mermoud, M. A., Fractional adaptive control for an automatic voltage regulator, ISA Trans, 52, 807-815, (2013)
[12] Ladaci, S.; Charef, A., On fractional adaptive control, Nonlinear Dyn, 43, 365-378, (2006) · Zbl 1134.93356
[13] Vinagre, B. M.; Petrás, I.; Podlubny, I.; Chen, Y., Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control, Nonlinear Dyn, 29, 269-279, (2002) · Zbl 1031.93110
[14] Suárez, J. I.; Vinagre, B. M.; Chen, Y., A fractional adaptation scheme for lateral control of an AGV, J Vib Control, 14, 1499-1511, (2008) · Zbl 1229.70086
[15] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability, Comput Math Appl, 59, 1810-1821, (2010) · Zbl 1189.34015
[16] Zhang, F.; Li, Ch.; Chen, Y. Q., Asymptotical stability of nonlinear differential systems with Caputo derivative, Int J Differ Equ, 2011, (2011)
[17] Aguila-Camacho, N.; Duarte-Mermoud, M. A.; Gallegos, J., Lyapunov functions for fractional order systems, Commun Nonlinear Sci Numer Simul, 19, 2951-2957, (2014)
[18] Horn, R. A.; Johnson, Ch. R., Matrix analysis, (1995), Cambridge University Press
[19] Bellman, R., Introduction to matrix analysis, (1997), Society for Industrial and Applied Mathematics (SIAM) · Zbl 0872.15003
[20] Wang, Y.; Li, T., Stability analysis of fractional-order nonlinear systems with delay, Math Prob Eng, 2014, (2014)
[21] Jarad, F.; Abdeljawad, T.; Baleanu, D., Stability of q-fractional non-autonomous systems, Nonlinear Anal Real World Appl, 14, 780-784, (2013) · Zbl 1258.34014
[22] Jarad, F.; Abdeljawad, T.; Baleanu, D.; Bicen, K., On the stability of some discrete non autonomous systems, Abstr Appl Anal, 2012, 780-784, (2012)
[23] Liu, K.; Jiang, W., Uniform stability of fractional neutral systems: a Lyapunov-krasovskii functional approach, Adv Difference Equ, 2013, (2013) · Zbl 1347.34110
[24] Slotine, J. J.; Li, W., Applied nonlinear control, (1991), Prentice Hall
[25] Narendra, K. S.; Annaswamy, A. M., Stable adaptive systems, (2005), Dover Publications Inc. · Zbl 1217.93081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.