zbMATH — the first resource for mathematics

Yang-Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory. (English) Zbl 1332.81197
Summary: We give an AdS/CFT interpretation to homogeneous Yang-Baxter deformations of the \(\mathrm{AdS}_5 \times \mathrm{S}^5\) superstring as noncommutative deformations of the dual gauge theory, going well beyond the canonical noncommutative case. These homogeneous Yang-Baxter deformations can be of so-called abelian or jordanian type. While abelian deformations have a clear interpretation in string theory and many already had well understood gauge theory duals, Jordanian deformations appear novel on both counts. We discuss the symmetry structure of the deformed string from the uniformizing perspective of Drinfeld twists and indicate that this structure can be realized on the gauge theory side by considering theories on various noncommutative spaces. We then conjecture that these are the gauge theory duals of our strings, modulo subtleties involving singularities. We support this conjecture by a brane construction for two jordanian examples, corresponding to noncommutative spaces with \([x^-\overset\star,x^i] \sim x^i\; (i = 1, 2)\). We also discuss \(\kappa\)-Minkowski type deformations of \(\mathrm{AdS}_5 \times \mathrm{S}^5\), one of which may be the gravity dual of gauge theory on spacelike \(\kappa\)-Minkowski space.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
16T25 Yang-Baxter equations
11G09 Drinfel’d modules; higher-dimensional motives, etc.
14D15 Formal methods and deformations in algebraic geometry
Full Text: DOI arXiv
[1] Maldacena, J. M., The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231-252, (1998) · Zbl 0914.53047
[2] Arutyunov, G.; Frolov, S., Foundations of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring. part I, J. Phys. A, 42, 254003, (2009) · Zbl 1167.81028
[3] Beisert, N.; Ahn, C.; Alday, L. F.; Bajnok, Z.; Drummond, J. M., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3-32, (2012)
[4] Lunin, O.; Maldacena, J. M., Deforming field theories with \(U(1) \times U(1)\) global symmetry and their gravity duals, J. High Energy Phys., 0505, (2005)
[5] Frolov, S.; Roiban, R.; Tseytlin, A. A., Gauge-string duality for superconformal deformations of \(N = 4\) super Yang-Mills theory, J. High Energy Phys., 0507, (2005) · Zbl 1114.81330
[6] Frolov, S., Lax pair for strings in lunin-Maldacena background, J. High Energy Phys., 0505, (2005)
[7] Delduc, F.; Magro, M.; Vicedo, B., An integrable deformation of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring action, Phys. Rev. Lett., 112, (2014) · Zbl 1333.81322
[8] Klimcik, C., Yang-Baxter sigma models and ds/AdS T duality, J. High Energy Phys., 0212, (2002)
[9] Klimcik, C., On integrability of the Yang-Baxter sigma-model, J. Math. Phys., 50, (2009) · Zbl 1215.81099
[10] Delduc, F.; Magro, M.; Vicedo, B., On classical q-deformations of integrable sigma-models, J. High Energy Phys., 1311, (2013) · Zbl 1342.81182
[11] Arutyunov, G.; Borsato, R.; Frolov, S., S-matrix for strings on η-deformed \(\operatorname{AdS}_5 \times \operatorname{S}^5\), J. High Energy Phys., 1404, (2014)
[12] Delduc, F.; Magro, M.; Vicedo, B., Derivation of the action and symmetries of the q-deformed \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring, J. High Energy Phys., 1410, (2014) · Zbl 1333.81322
[13] Lunin, O.; Roiban, R.; Tseytlin, A., Supergravity backgrounds for deformations of \(\operatorname{AdS}_n \times \operatorname{S}^n\) supercoset string models, Nucl. Phys. B, 891, 106-127, (2015) · Zbl 1328.81182
[14] Arutyunov, G.; de Leeuw, M.; van Tongeren, S. J., The exact spectrum and mirror duality of the \((\operatorname{AdS}_5 \times \operatorname{S}^5)_\eta\) superstring, Theor. Math. Phys., 182, 1, 23-51, (2015) · Zbl 1317.81211
[15] Arutyunov, G.; van Tongeren, S. J., The \(\operatorname{AdS}_5 \times \operatorname{S}^5\) mirror model as a string, Phys. Rev. Lett., 113, (2014)
[16] Arutyunov, G.; van Tongeren, S. J., Double Wick rotating Green-Schwarz strings, J. High Energy Phys., 1505, (2015) · Zbl 1388.81470
[17] Hoare, B.; Roiban, R.; Tseytlin, A., On deformations of \(\operatorname{AdS}_n \times \operatorname{S}^n\) supercosets, J. High Energy Phys., 1406, (2014)
[18] Sfetsos, K., Integrable interpolations: from exact CFTs to non-abelian T-duals, Nucl. Phys. B, 880, 225-246, (2014) · Zbl 1284.81257
[19] Hollowood, T. J.; Miramontes, J. L.; Schmidtt, D. M., An integrable deformation of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring, J. Phys. A, 47, 49, 495402, (2014) · Zbl 1305.81120
[20] Demulder, S.; Sfetsos, K.; Thompson, D. C., Integrable λ-deformations: squashing coset CFTs and \(\operatorname{AdS}_5 \times \operatorname{S}^5\) · Zbl 1388.83790
[21] Sfetsos, K.; Thompson, D. C., Spacetimes for λ-deformations
[22] Vicedo, B., Deformed integrable σ-models, classical R-matrices and classical exchange algebra on Drinfeld doubles · Zbl 1422.37037
[23] Hoare, B.; Tseytlin, A., On integrable deformations of superstring sigma models related to \(\operatorname{AdS}_n \times \operatorname{S}^n\) supercosets · Zbl 1329.81317
[24] Balog, J.; Forgacs, P.; Horvath, Z.; Palla, L., A new family of SU(2) symmetric integrable sigma models, Phys. Lett. B, 324, 403-408, (1994)
[25] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., Jordanian deformations of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring, J. High Energy Phys., 1404, (2014)
[26] Matsumoto, T.; Yoshida, K., Lunin-Maldacena backgrounds from the classical Yang-Baxter equation - towards the gravity/CYBE correspondence, J. High Energy Phys., 1406, (2014) · Zbl 1333.83196
[27] Matsumoto, T.; Yoshida, K., Integrability of classical strings dual for noncommutative gauge theories, J. High Energy Phys., 1406, (2014) · Zbl 1333.81262
[28] van Tongeren, S. J., On classical Yang-Baxter based deformations of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring
[29] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., A Jordanian deformation of AdS space in type IIB supergravity, J. High Energy Phys., 1406, (2014) · Zbl 1333.83195
[30] Matsumoto, T.; Yoshida, K., Yang-Baxter deformations and string dualities, J. High Energy Phys., 1503, (2015) · Zbl 1388.83865
[31] Drinfeld, V., On constant quasi-classical solutions of the Yang-Baxter quantum equation, Sov. Math. Dokl., 28, 667, (1983)
[32] Douglas, M. R.; Nekrasov, N. A., Noncommutative field theory, Rev. Mod. Phys., 73, 977-1029, (2001) · Zbl 1205.81126
[33] Szabo, R. J., Quantum field theory on noncommutative spaces, Phys. Rep., 378, 207-299, (2003) · Zbl 1042.81581
[34] Chaichian, M.; Kulish, P.; Nishijima, K.; Tureanu, A., On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B, 604, 98-102, (2004) · Zbl 1247.81518
[35] Chaichian, M.; Presnajder, P.; Tureanu, A., New concept of relativistic invariance in NC space-time: twisted Poincaré symmetry and its implications, Phys. Rev. Lett., 94, (2005)
[36] Aschieri, P.; Dimitrijevic, M.; Meyer, F.; Wess, J., Noncommutative geometry and gravity, Class. Quantum Gravity, 23, 1883-1912, (2006) · Zbl 1091.83022
[37] Aschieri, P.; Dimitrijevic, M.; Meyer, F.; Schraml, S.; Wess, J., Twisted gauge theories, Lett. Math. Phys., 78, 61-71, (2006) · Zbl 1104.81080
[38] Aschieri, P.; Lizzi, F.; Vitale, P., Twisting all the way: from classical mechanics to quantum fields, Phys. Rev. D, 77, (2008)
[39] Szabo, R. J., Symmetry, gravity and noncommutativity, Class. Quantum Gravity, 23, R199-R242, (2006) · Zbl 1117.83001
[40] Dimitrijevic, M.; Jonke, L.; Pachoł, A., Gauge theory on twisted κ-Minkowski: old problems and possible solutions, SIGMA, 10, (2014) · Zbl 1295.81125
[41] Seiberg, N.; Witten, E., String theory and noncommutative geometry, J. High Energy Phys., 9909, (1999) · Zbl 0957.81085
[42] Madore, J.; Schraml, S.; Schupp, P.; Wess, J., Gauge theory on noncommutative spaces, Eur. Phys. J. C, 16, 161-167, (2000)
[43] Jurco, B.; Moller, L.; Schraml, S.; Schupp, P.; Wess, J., Construction of nonabelian gauge theories on noncommutative spaces, Eur. Phys. J. C, 21, 383-388, (2001) · Zbl 1099.81524
[44] Connes, A.; Douglas, M. R.; Schwarz, A. S., Noncommutative geometry and matrix theory: compactification on tori, J. High Energy Phys., 9802, (1998) · Zbl 1018.81052
[45] Douglas, M. R.; Hull, C. M., D-branes and the noncommutative torus, J. High Energy Phys., 9802, (1998) · Zbl 0957.81017
[46] Chu, C.-S.; Ho, P.-M., Noncommutative open string and D-brane, Nucl. Phys. B, 550, 151-168, (1999) · Zbl 0947.81136
[47] Schomerus, V., D-branes and deformation quantization, J. High Energy Phys., 9906, (1999) · Zbl 0961.81066
[48] Seiberg, N.; Susskind, L.; Toumbas, N., Strings in background electric field, space/time noncommutativity and a new noncritical string theory, J. High Energy Phys., 0006, (2000) · Zbl 0989.81608
[49] Gopakumar, R.; Maldacena, J. M.; Minwalla, S.; Strominger, A., S duality and noncommutative gauge theory, J. High Energy Phys., 0006, (2000) · Zbl 0989.81125
[50] Cornalba, L.; Schiappa, R., Nonassociative star product deformations for D-brane world volumes in curved backgrounds, Commun. Math. Phys., 225, 33-66, (2002) · Zbl 1042.81065
[51] Chu, C.-S.; Ho, P.-M., Noncommutative D-brane and open string in pp wave background with B field, Nucl. Phys. B, 636, 141-158, (2002) · Zbl 0996.81078
[52] Alekseev, A. Y.; Recknagel, A.; Schomerus, V., Noncommutative world volume geometries: branes on SU(2) and fuzzy spheres, J. High Energy Phys., 9909, (1999) · Zbl 0957.81084
[53] Alekseev, A. Y.; Recknagel, A.; Schomerus, V., Brane dynamics in background fluxes and noncommutative geometry, J. High Energy Phys., 0005, (2000) · Zbl 0992.81061
[54] Ho, P.-M.; Yeh, Y.-T., Noncommutative D-brane in nonconstant NS-NS B field background, Phys. Rev. Lett., 85, 5523-5526, (2000) · Zbl 1369.81094
[55] Majid, S.; Ruegg, H., Bicrossproduct structure of kappa Poincaré group and noncommutative geometry, Phys. Lett. B, 334, 348-354, (1994) · Zbl 1112.81328
[56] Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoi, V. N., Q deformation of Poincaré algebra, Phys. Lett. B, 264, 331-338, (1991)
[57] Lukierski, J.; Nowicki, A.; Ruegg, H., New quantum Poincaré algebra and k deformed field theory, Phys. Lett. B, 293, 344-352, (1992) · Zbl 0834.17022
[58] Amelino-Camelia, G., Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D, 11, 35-60, (2002) · Zbl 1062.83500
[59] Amelino-Camelia, G., Testable scenario for relativity with minimum length, Phys. Lett. B, 510, 255-263, (2001) · Zbl 1062.83540
[60] Kowalski-Glikman, J., Introduction to doubly special relativity, Lect. Notes Phys., 669, 131-159, (2005)
[61] Amelino-Camelia, G.; Arzano, M., Coproduct and star product in field theories on Lie algebra noncommutative space-times, Phys. Rev. D, 65, (2002)
[62] Dimitrijevic, M.; Jonke, L.; Moller, L.; Tsouchnika, E.; Wess, J., Deformed field theory on kappa space-time, Eur. Phys. J. C, 31, 129-138, (2003) · Zbl 1032.81529
[63] Agostini, A.; Amelino-Camelia, G.; Arzano, M.; D’Andrea, F., Action functional for kappa-Minkowski noncommutative spacetime
[64] Schenkel, A.; Uhlemann, C. F., Field theory on curved noncommutative spacetimes, SIGMA, 6, (2010) · Zbl 1217.81141
[65] Meljanac, S.; Samsarov, A.; Trampetic, J.; Wohlgenannt, M., Scalar field propagation in the \(\phi^4\) kappa-Minkowski model, J. High Energy Phys., 1112, (2011) · Zbl 1306.81305
[66] Dimitrijevic, M.; Meyer, F.; Moller, L.; Wess, J., Gauge theories on the kappa Minkowski space-time, Eur. Phys. J. C, 36, 117-126, (2004) · Zbl 1191.81204
[67] Dimitrijevic, M.; Jonke, L.; Moller, L., U(1) gauge field theory on kappa-Minkowski space, J. High Energy Phys., 0509, (2005)
[68] Borowiec, A.; Pachol, A., Unified description for κ-deformations of orthogonal groups, Eur. Phys. J. C, 74, 3, 2812, (2014)
[69] Jurić, T.; Meljanac, S.; Samsarov, A., Light-like κ-deformations and scalar field theory via Drinfeld twist
[70] Dimitrijevic, M.; Jonke, L., A twisted look on kappa-Minkowski: U(1) gauge theory, J. High Energy Phys., 1112, (2011) · Zbl 1306.81046
[71] Borowiec, A.; Lukierski, J.; Pachoł, A., Twisting and κ-Poincaré, J. Phys. A, 47, 40, 405203, (2014) · Zbl 1301.81084
[72] Borowiec, A.; Pachoł, A., Kappa-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D, 79, (2009)
[73] Matsumoto, T.; Orlando, D.; Reffert, S.; Sakamoto, J.-i.; Yoshida, K., Yang-Baxter deformations of Minkowski spacetime · Zbl 1388.81422
[74] Metsaev, R.; Tseytlin, A. A., Type IIB superstring action in \(\operatorname{AdS}(5) \times \operatorname{S}^5\) background, Nucl. Phys. B, 533, 109-126, (1998) · Zbl 0956.81063
[75] Bena, I.; Polchinski, J.; Roiban, R., Hidden symmetries of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring, Phys. Rev. D, 69, (2004)
[76] Hashimoto, A.; Itzhaki, N., Noncommutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B, 465, 142-147, (1999) · Zbl 0987.81108
[77] Maldacena, J. M.; Russo, J. G., Large N limit of noncommutative gauge theories, J. High Energy Phys., 9909, (1999) · Zbl 0957.81083
[78] Alday, L. F.; Arutyunov, G.; Frolov, S., Green-Schwarz strings in tst-transformed backgrounds, J. High Energy Phys., 0606, (2006)
[79] Matsumoto, T.; Yoshida, K., Integrable deformations of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring and the classical Yang-Baxter equation - towards the gravity/CYBE correspondence, J. Phys. Conf. Ser., 563, 1, (2014)
[80] Chari, V.; Pressley, A., A guide to quantum groups, (1994), Univ. Press Cambridge, UK · Zbl 0839.17009
[81] Reshetikhin, N., Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys., 20, 331-335, (1990) · Zbl 0719.17006
[82] Giaquinto, A.; Zhang, J. J., Bialgebra actions, twists, and universal deformation formulas, J. Pure Appl. Algebra, 128, 133-151, (1998) · Zbl 0938.17015
[83] Tolstoy, V., Twisted quantum deformations of Lorentz and Poincaré algebras, Bulg. J. Phys., 35, 441-459, (2008) · Zbl 1202.81114
[84] Kulish, P.; Lyakhovsky, V.; Mudrov, A., Extended Jordanian twists for Lie algebras, J. Math. Phys., 40, 4569, (1999) · Zbl 0964.81041
[85] Beisert, N.; Roiban, R., Beauty and the twist: the Bethe ansatz for twisted \(N = 4\) SYM, J. High Energy Phys., 0508, (2005)
[86] van Tongeren, S. J., Integrability of the \(\operatorname{AdS}_5 \times \operatorname{S}^5\) superstring and its deformations, J. Phys. A, 47, 43, 433001, (2014) · Zbl 1319.81071
[87] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., Schroedinger sigma models and Jordanian twists, J. High Energy Phys., 1308, (2013) · Zbl 1342.83108
[88] Matsumoto, T.; Yoshida, K., Yang-Baxter sigma models based on the CYBE, Nucl. Phys. B, 893, 287-304, (2015) · Zbl 1348.81379
[89] Leigh, R. G.; Strassler, M. J., Exactly marginal operators and duality in four-dimensional \(N = 1\) supersymmetric gauge theory, Nucl. Phys. B, 447, 95-136, (1995) · Zbl 1009.81570
[90] Matsumoto, T.; Yoshida, K., Schrödinger geometries arising from Yang-Baxter deformations · Zbl 1388.83866
[91] Dasgupta, K.; Sheikh-Jabbari, M., Noncommutative dipole field theories, J. High Energy Phys., 0202, (2002)
[92] Hashimoto, A.; Thomas, K., Non-commutative gauge theory on d-branes in melvin universes, J. High Energy Phys., 0601, (2006)
[93] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., The quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys., 172, 187-220, (1995) · Zbl 0847.53051
[94] Bahns, D.; Doplicher, S.; Fredenhagen, K.; Piacitelli, G., On the unitarity problem in space-time noncommutative theories, Phys. Lett. B, 533, 178-181, (2002) · Zbl 0994.81117
[95] Aharony, O.; Gomis, J.; Mehen, T., On theories with lightlike noncommutativity, J. High Energy Phys., 0009, (2000) · Zbl 0989.81621
[96] Hashimoto, A.; Sethi, S., Holography and string dynamics in time dependent backgrounds, Phys. Rev. Lett., 89, (2002) · Zbl 1267.81270
[97] Lukierski, J.; Lyakhovsky, V.; Mozrzymas, M., Kappa deformations of \(D = 4\) Weyl and conformal symmetries, Phys. Lett. B, 538, 375-384, (2002) · Zbl 0995.17006
[98] Zakrzewski, S., Poisson structures on the Lorentz group, Lett. Math. Phys., 32, 1, 11-23, (1994) · Zbl 0827.17016
[99] Frolov, S.; Roiban, R.; Tseytlin, A. A., Gauge-string duality for (non)supersymmetric deformations of \(N = 4\) super Yang-Mills theory, Nucl. Phys. B, 731, 1-44, (2005) · Zbl 1114.81330
[100] Fokken, J.; Sieg, C.; Wilhelm, M., Non-conformality of \(\gamma_i\)-deformed \(N = 4\) SYM theory, J. Phys. A, 47, 455401, (2014) · Zbl 1304.81122
[101] Fokken, J.; Sieg, C.; Wilhelm, M., A piece of cake: the ground-state energies in \(\gamma_i\)-deformed \(\mathcal{N} = 4\) SYM theory at leading wrapping order, J. High Energy Phys., 1409, (2014)
[102] Borowiec, A.; Lukierski, J.; Tolstoy, V., New twisted quantum deformations of \(D = 4\) super-Poincaré algebra · Zbl 1191.81134
[103] Berkovits, N.; Maldacena, J., Fermionic T-duality, dual superconformal symmetry, and the amplitude/Wilson loop connection, J. High Energy Phys., 0809, (2008) · Zbl 1245.81267
[104] Beisert, N.; Ricci, R.; Tseytlin, A. A.; Wolf, M., Dual superconformal symmetry from \(\operatorname{AdS}(5) \times \operatorname{S}^5\) superstring integrability, Phys. Rev. D, 78, (2008)
[105] Zakrzewski, S., Poisson structures on the Poincaré group, Commun. Math. Phys., 185, 2, 285-311, (1997) · Zbl 0874.22017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.