zbMATH — the first resource for mathematics

Generalizations of complete mappings of finite fields and some applications. (English) Zbl 1332.11107
Summary: Permutation polynomials of finite fields have many applications in cryptography, coding theory, and combinatorics. In the first part we mention some applications of a class of permutation polynomials with additional features which includes complete mappings and orthomorphisms. In the second part we discuss several constructions. We focus on linearized polynomials and cyclotomic polynomials of degree 2.

11T06 Polynomials over finite fields
68P25 Data encryption (aspects in computer science)
94A60 Cryptography
Full Text: DOI
[1] Chou, W.-S.; Niederreiter, H., Monomials and binomials over finite fields as \(\mathcal{R}\)-orthomorphisms, Publ. Math. (Debr.), 61, 3-4, 511-521, (2002) · Zbl 1012.11104
[2] Cohen, S. D.; Niederreiter, H.; Shparlinski, I. E.; Zieve, M., Incomplete character sums and a special class of permutations, 21st Journées Arithmétiques, Rome, 2001, J. Théor. Nr. Bordx., 13, 1, 53-63, (2001) · Zbl 1065.11097
[3] Drmota, M.; Tichy, R. F., Sequences, discrepancies and applications, Lect. Notes Math., vol. 1651, (1997), Springer-Verlag Berlin · Zbl 0877.11043
[4] Evans, A. B., On strong complete mappings, Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1989, Congr. Numer., 70, 241-248, (1990)
[5] Evans, A. B., The existence of strong complete mappings, Electron. J. Comb., 19, 1, (2012), Paper 34, 10 pp · Zbl 1243.05050
[6] Laywine, C. F.; Mullen, G. L., Discrete mathematics using Latin squares, Wiley-Interscience Ser. Discrete Math. Optim, (1998), Wiley-Interscience Publication, John Wiley & Sons, Inc. New York · Zbl 0957.05002
[7] Lidl, R.; Niederreiter, H., Finite fields, Encycl. Math. Appl., vol. 20, (1997), Cambridge University Press Cambridge
[8] Mann, H. B., The construction of orthogonal Latin squares, Ann. Math. Stat., 13, 418-423, (1942) · Zbl 0060.02706
[9] Niederreiter, H., Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conf. Ser. Appl. Math., vol. 63, (1992), Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0761.65002
[10] Niederreiter, H.; Robinson, K. H., Complete mappings of finite fields, J. Aust. Math. Soc. A, 33, 2, 197-212, (1982) · Zbl 0495.12018
[11] Niederreiter, H.; Winterhof, A., Cyclotomic \(\mathcal{R}\)-orthomorphisms of finite fields, Discrete Math., 295, 1-3, 161-171, (2005) · Zbl 1078.11068
[12] Shaheen, R.; Winterhof, A., Permutations of finite fields for check digit systems, Des. Codes Cryptogr., 57, 3, 361-371, (2010) · Zbl 1248.11100
[13] Shparlinski, I. E., Cryptographic applications of analytic number theory. complexity lower bounds and pseudorandomness, Prog. Comput. Sci. Appl. Log., vol. 22, (2003), Birkhäuser Verlag Basel · Zbl 1036.94001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.