×

zbMATH — the first resource for mathematics

Comments on microcausality, chaos, and gravitational observables. (English) Zbl 1331.83046

MSC:
83C57 Black holes
83C45 Quantization of the gravitational field
81P15 Quantum measurement theory, state operations, state preparations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Shenker S H and Stanford D 2014 Black holes and the butterfly effect J. High Energy Phys. JHEP03(2014)067 · Zbl 1333.83111
[2] Shenker S H and Stanford D 2014 Multiple Shocks J. High Energy Phys. JHEP12(2014)046 · Zbl 1333.83111
[3] Shenker S H and Stanford D 2015 Stringy effects in scrambling J. High Energy Phys. JHEP05(2015)132 · Zbl 1388.83500
[4] Maldacena J, Shenker S H and Stanford D 2015 A bound on chaos arXiv:1503.01409 · Zbl 1390.81388
[5] Almheiri A, Dong X and Harlow D 2015 Bulk Locality and Quantum Error Correction in AdS/CFT J. High Energy Phys. JHEP04(2015)163 · Zbl 1388.81095
[6] Giddings S B 2015 Hilbert space structure in quantum gravity: an algebraic perspective arXiv:1503.08207 · Zbl 1388.83116
[7] Donnelly W and Giddings S B 2015 Diffeomorphism-invariant observables and their nonlocal algebra arXiv:1507.07921
[8] Geheniau J and Debever R 1956 Bull. Cl. Sci. Acad. R. Belg.42 114
[9] Geheniau J and Debever R 1956 Helv. Phys. Acta4 101
[10] Komar A 1958 Construction of a complete set of independent observables in the general theory of relativity Phys. Rev.111 1182 · Zbl 0082.21003
[11] Bergman P and Komar A 1960 Poisson brackets between locally defined observables in general relativity Phys. Rev. Lett.4 432
[12] DeWitt B S 1962 The Quantization of geometry Gravitation: An Introduction to Current Research ed L Witten (Wiley: New York) pp 266–381 ch 8
[13] Giddings S B, Marolf D and Hartle J B 2006 Observables in effective gravity Phys. Rev. D 74 064018
[14] Giddings S B and Marolf D 2007 A Global picture of quantum de Sitter space Phys. Rev. D 76 064023
[15] Khavkine I 2015 Local and gauge invariant observables in gravity arXiv:1503.03754
[16] Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys.2 253–91 · Zbl 0914.53048
[17] Tsamis N C and Woodard R P 1992 Physical Green’s functions in quantum gravity Ann. Phys., NY215 96–155
[18] Fefferman C and Graham C R 1985 Conformal invariants Elie Cartan et les Mathématiques d’aujourd’hui (Astérisque; Marseilles: Société Mathématique de France) p 9
[19] Heemskerk I 2012 Construction of Bulk Fields with Gauge Redundancy J. High Energy Phys. JHEP09(2012)106
[20] Kabat D and Lifschytz G 2014 Decoding the hologram: scalar fields interacting with gravity Phys. Rev. D 89 066010 · Zbl 1333.83094
[21] Kabat D and Lifschytz G 2015 Bulk equations of motion from CFT correlators J. High Energy Phys. JHEP09(2015)059 · Zbl 1388.83274
[22] Marolf D M 1994 Poisson brackets on the space of histories Ann. Phys., NY236 374–91 · Zbl 0805.58024
[23] Peierls R E 1952 The commutation laws of relativistic field theory Proc. R. Soc.214 143–57 · Zbl 0048.44606
[24] Lichnerowicz A 1939 Probémes globaux en méchanique relativiste (Paris: Hermann)
[25] Giddings S B and Lippert M 2002 Precursors, black holes, and a locality bound Phys. Rev. D 65 024006
[26] Giddings S B and Lippert M 2004 The information paradox and the locality bound Phys. Rev. D 69 124019
[27] Marolf D 2009 Unitarity and holography in gravitational physics Phys. Rev. D 79 044010
[28] Donnelly W 2014 Entanglement entropy and nonabelian gauge symmetry Class. Quantum Grav.31 214003 · Zbl 1304.81121
[29] Donnelly W and Wall A C 2015 Entanglement entropy of electromagnetic edge modes Phys. Rev. Lett.114 111603
[30] Donnelly W and Wall A C 2015 Geometric entropy and edge modes of the electromagnetic field arXiv:1506.05792
[31] Bousso R, Fisher Z, Leichenauer S and Wall A C 2015 A Quantum Focussing Conjecture arXiv:1506.02669
[32] Higgs P W 1958 Integration of secondary constraints in quantized general relativity Phys. Rev. Lett.1 373–4
[33] Higgs P W 1959 Integration of secondary constraints in quantized general relativity Phys. Rev. Lett.3 66 (erratum)
[34] Ashtekar A 1991 Lectures on nonperturbative canonical gravity Adv. Ser. Astrophys. Cosmol6 1–334
[35] Torre C G 1992 Is general relativity an ’already parametrized’ theory? Phys. Rev. D 46 3231–4
[36] Freidel L and Livine E R 2006 Effective 3D quantum gravity and non-commutative quantum field theory Phys. Rev. Lett.96 221301 · Zbl 1228.83047
[37] Mukhanov V F, Feldman H A and Brandenberger R H 1992 Theory of cosmological perturbations: I. Classical perturbations, II. Quantum theory of perturbations, III. Extensions Phys. Rep.215 203–333
[38] Rovelli C 2002 GPS observables in general relativity Phys. Rev. D 65 044017
[39] Khavkine I 2012 Quantum astrometric observables: I. Time delay in classical and quantum gravity Phys. Rev. D 85 124014
[40] Duch P, Kaminski W, Lewandowski J and Swiezewski J 2014 Observables for general relativity related to geometry J. High Energy Phys. JHEP05(2014)077 · Zbl 1333.83010
[41] Gary M and Giddings S B 2007 Relational observables in 2D quantum gravity Phys. Rev. D 75 104007
[42] Marolf D 1995 Quantum observables and recollapsing dynamics Class. Quantum Grav.12 1199–220 · Zbl 0839.47048
[43] Marolf D 1995 Almost ideal clocks in quantum cosmology: a brief derivation of time Class. Quantum Grav.12 2469–86 · Zbl 0840.53064
[44] Dirac P A M 1964 Lectures on quantum mechanics Belfer Graduate School of Science(Belfer Graduate School of Science Monographs Series vol 2) (New York: Yeshiva University)
[45] Marolf D M 1994 The Generalized Peierls bracket Ann. Phys., NY236 392–412 · Zbl 0806.58056
[46] Brunetti R, Fredenhagen K and Verch R 2003 The generally covariant locality principle: a new paradigm for local quantum field theory Commun. Math. Phys.237 31–68 · Zbl 1047.81052
[47] Hollands S and Wald R M 2015 Quantum fields in curved spacetime Phys. Rep.574 1–35 · Zbl 1357.81144
[48] Brunetti R, Fredenhagen K and Rejzner K 2013 Quantum gravity from the point of view of locally covariant quantum field theory arXiv:1306.1058 · Zbl 1346.83001
[49] Barnich G and Henneaux M 1994 Renormalization of gauge invariant operators and anomalies in Yang–Mills theory Phys. Rev. Lett.72 1588–91 · Zbl 0973.81536
[50] Hollands S 2008 Renormalized quantum Yang–Mills fields in curved spacetime Rev. Math. Phys.20 1033–172 · Zbl 1161.81022
[51] Piguet O and Sorella S P 1995 Algebraic Renormalization: Perturbative Renormalization Symmetries and Anomalies (New York: Springer) · Zbl 0845.58069
[52] Duetsch M and Boas F M 2002 The master ward identity Rev. Math. Phys.14 977 · Zbl 1037.81074
[53] Brennecke F and Dutsch M 2008 Removal of violations of the master ward identity in perturbative QFT Rev. Math. Phys.20 119–72 · Zbl 1149.81017
[54] Fischler W 2000
[55] Banks T 2000 Cosmological breaking of supersymmetry? or Little lambda goes back to the future 2 Int. J. Mod. Phys.A16 910–921 · Zbl 0982.83040
[56] Wheeler J A 1964 Relativity, Groups, and Fields ed B S DeWitt and C M DeWitt (New York: Gordon and Breach)
[57] Hsu S D H and Reeb D 2008 Unitarity and the Hilbert space of quantum gravity Class. Quantum Grav.25 235007 · Zbl 1155.83339
[58] Hsu S D H and Reeb D 2009 Monsters, black holes and the statistical mechanics of gravity Mod. Phys. Lett. A 24 1875–87 · Zbl 1175.83086
[59] Stanford D and Susskind L 2014 Complexity and shock wave geometries Phys. Rev. D 90 126007
[60] Christodoulou M and Rovelli C 2015 How big is a black hole? Phys. Rev. D 91 064046
[61] Almheiri A, Marolf D, Polchinski J, Stanford D and Sully J 2013 An apologia for firewalls J. High Energy Phys. JHEP09(2013)018 · Zbl 06615883
[62] Khavkine I 2012 Characteristics, conal geometry and causality in locally covariant field theory arXiv:1211.1914
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.