×

zbMATH — the first resource for mathematics

Towards effective topological field theory for knots. (English) Zbl 1331.81264
Summary: Construction of (colored) knot polynomials for double-fat graphs is further generalized to the case when ”fingers” and ”propagators” are substituting \(\mathcal{R}\)-matrices in arbitrary closed braids with \(m\)-strands. Original version of [A. Anokhina, the authors et al., ibid. 882, 171–194 (2014: Zbl 1285.81035)] corresponds to the case \(m = 2\), and our generalization sheds additional light on the structure of those mysterious formulas. Explicit expressions are now combined from Racah matrices of the type \(R \otimes R \otimes \overline{R} \longrightarrow \overline{R}\) and mixing matrices in the sectors \(R^{\otimes 3} \longrightarrow Q\). Further extension is provided by composition rules, allowing to glue two blocks, connected by an \(m\)-strand braid (they generalize the product formula for ordinary composite knots with \(m = 1\)).

MSC:
81T45 Topological field theories in quantum mechanics
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Reshetikhin, N. Yu.; Turaev, V. G.; Guadagnini, E.; Martellini, M.; Mintchev, M.; Guadagnini, E.; Martellini, M.; Mintchev, M., (Proceedings, Clausthal, (1989)), Phys. Lett. B, 235, 275-317, (1990)
[2] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B.R.; Millet, K.; Ocneanu, A.; Przytycki, J. H.; Traczyk, K. P., Bull. Am. Math. Soc., Kobe J. Math., 4, 115-139, (1987)
[3] Witten, E., Commun. Math. Phys., 121, 351, (1989)
[4] Kaul, R. K.; Govindarajan, T. R.; Kaul, R. K.; Govindarajan, T. R.; Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Ramadevi, P.; Sarkar, T.; Ramadevi, P.; Zodinmawia; Ramadevi, P.; Zodinmawia, Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, Mod. Phys. Lett. A, Nucl. Phys. B, 600, 487-511, (2001)
[5] Alvarez, M.; Labastida, J. M.F.; Perez, E., Nucl. Phys. B, 488, 677-718, (1997)
[6] Morozov, A.; Smirnov, A.; Smirnov, A., (Proc. International School of Subnuclear Physics, Erice, Italy, (2009)), 835, 284-313, (2010)
[7] Dunin-Barkowski, P.; Sleptsov, A.; Smirnov, A.; Dunin-Barkowski, P.; Sleptsov, A.; Smirnov, A., Int. J. Mod. Phys. A, J. Phys. A, Math. Theor., 45, (2012)
[8] Khovanov, M.; Khovanov, M.; Khovanov, M.; Khovanov, M.; Khovanov, M.; Khovanov, M.; Khovanov, M., Duke Math. J., Exp. Math., J. Knot Theory Ramif., Algebr. Geom. Topol., Int. J. Math., 18, 8, 869-885, (2007)
[9] Bar-Natan, D.; Bar-Natan, D.; Bar-Natan, D., Algebr. Geom. Topol., Geom. Topol., J. Knot Theory Ramif., 16, 3, 243-255, (2007)
[10] Khovanov, M.; Rozansky, L.; Khovanov, M.; Rozansky, L.; Khovanov, M.; Rozansky, L., Fundam. Math., Geom. Topol., 12, 3, 1387-1425, (2008)
[11] Carqueville, N.; Murfet, D.
[12] Dolotin, V.; Morozov, A.; Dolotin, V.; Morozov, A., J. High Energy Phys., J. Phys., 411, (2013)
[13] Witten, E.
[14] Dolotin, V.; Morozov, A.; Anokhina, A.; Morozov, A., Nucl. Phys. B, 878, 12-81, (2014)
[15] Kauffman, L.; Kauffman, L.; Kauffman, L.; Vogel, P., Topology, Trans. Am. Math. Soc., J. Knot Theory Ramif., 1, 59-104, (1992)
[16] Mironov, A.; Morozov, A.; Morozov, An.; Mironov, A.; Morozov, A.; Morozov, An., (Rebhan, A.; Katzarkov, L.; Knapp, J.; Rashkov, R.; Scheidegger, E., Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, (2013), World Scientific Publishing Co. Pte. Ltd), 03, 101-118, (2012)
[17] Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An.; Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.; Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An., Int. J. Mod. Phys. A, Nucl. Phys. B, Int. J. Mod. Phys. A, 28, 271-313, (2013)
[18] Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An., Adv. High Energy Phys., 2013, (2013)
[19] Rosso, M.; Jones, V. F.R.; Lin, X.-S.; Zheng, H., J. Knot Theory Ramif., Trans. Am. Math. Soc., 362, 1-18, (2010)
[20] Mironov, A.; Morozov, A.; Natanzon, S.; Mironov, A.; Morozov, A.; Natanzon, S., Theor. Math. Phys., J. Geom. Phys., 62, 148-155, (2012)
[21] A.N. Kirillov, N.Yu. Reshetikhin, Representations of the algebra Uq(2), q-orthogonal polynomials and invariants of links, preprint, 1988.
[22] Anokhina, A.; Morozov, An., Theor. Math. Phys., 178, 1-58, (2014)
[23] Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An., Nucl. Phys. B, 882, 171-194, (2014)
[24] Mironov, A.; Morozov, A.; Morozov, An., Mod. Phys. Lett. A, 29, (2014)
[25] Mironov, A.; Morozov, A.; Morozov, An.; Ramadevi, P.; Singh, Vivek Kumar
[26] Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Nawata, S.; Ramadevi, P.; Zodinmawia; Zodinmawia, Mod. Phys. Lett. A, J. Knot Theory Ramif., 22, 13-3218, (2014), PhD thesis
[27] Galakhov, D.; Melnikov, D.; Mironov, A.; Morozov, A.; Sleptsov, A.; Mironov, A.; Morozov, A.; Sleptsov, A.; Galakhov, D.; Melnikov, D.; Mironov, A.; Morozov, A.
[28] Knot atlas, (by D. Bar-Natan)
[29] Nawata, S.; Ramadevi, P.; Singh, Vivek Kumar
[30] Mironov, A.; Morozov, A.; Morozov, An., AIP Conf. Proc., 1562, 123, (2013)
[31] Kononov, Ya.; Morozov, A.; Kononov, Ya.; Morozov, A.
[32] Morton, H. R.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.