×

zbMATH — the first resource for mathematics

Superfield description of \((4 + 2 n)\)-dimensional SYM theories and their mixtures on magnetized tori. (English) Zbl 1331.81184
Summary: We provide a systematic way of dimensional reduction for \((4 + 2 n)\)-dimensional \(\operatorname{U}(N)\) supersymmetric Yang-Mills (SYM) theories (\(n = 0, 1, 2, 3\)) and their mixtures compactified on two-dimensional tori with background magnetic fluxes, which preserve a partial \(\mathcal{N} = 1\) supersymmetry out of full \(\mathcal{N} = 2, 3\) or 4 in the original SYM theories. It is formulated in an \(\mathcal{N} = 1\) superspace respecting the unbroken supersymmetry, and the four-dimensional effective action is written in terms of superfields representing \(\mathcal{N} = 1\) vector and chiral multiplets, those arise from the higher-dimensional SYM theories. We also identify the dilaton and geometric moduli dependence of matter Kähler metrics and superpotential couplings as well as of gauge kinetic functions in the effective action. The results would be useful for various phenomenological/cosmological model buildings with SYM theories or D-branes wrapping magnetized tori, especially, with mixture configurations of them with different dimensionalities from each other.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32Q15 Kähler manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ibanez, L. E.; Uranga, A. M., String theory and particle physics: an introduction to string phenomenology, (2012), Cambridge Univ. Press Cambridge, UK, 673 pp · Zbl 1260.81001
[2] Arkani-Hamed, N.; Schmaltz, M., Phys. Rev. D, 61, (2000)
[3] Bachas, C.
[4] Angelantonj, C.; Antoniadis, I.; Dudas, E.; Sagnotti, A., Phys. Lett. B, 489, 223, (2000)
[5] Blumenhagen, R.; Goerlich, L.; Kors, B.; Lust, D., Fortschr. Phys., 49, 591, (2001)
[6] Cremades, D.; Ibanez, L. E.; Marchesano, F., J. High Energy Phys., 0405, (2004)
[7] Abe, H.; Kobayashi, T.; Ohki, H., J. High Energy Phys., 0809, (2008)
[8] Abe, H.; Choi, K. S.; Kobayashi, T.; Ohki, H.; Abe, H.; Choi, K. S.; Kobayashi, T.; Ohki, H.; Abe, H.; Choi, K. S.; Kobayashi, T.; Ohki, H.; Choi, K. S.; Kobayashi, T.; Maruyama, R.; Murata, M.; Nakai, Y.; Ohki, H.; Sakai, M.; Abe, H.; Choi, K. S.; Kobayashi, T.; Ohki, H.; Kobayashi, T.; Maruyama, R.; Murata, M.; Ohki, H.; Sakai, M., Nucl. Phys. B, Nucl. Phys. B, Phys. Rev. D, Eur. Phys. J. C, Phys. Rev. D, J. High Energy Phys., 1005, 273, (2010)
[9] Abe, H.; Kobayashi, T.; Ohki, H.; Sumita, K., Nucl. Phys. B, 863, 1, (2012)
[10] Abe, H.; Kobayashi, T.; Ohki, H.; Oikawa, A.; Sumita, K., Nucl. Phys. B, 870, 30, (2013)
[11] Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M.; Abe, H.; Kobayashi, T.; Ohki, H.; Sumita, K.; Tatsuta, Y.; Abe, T. H.; Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M.; Abe, H.; Kobayashi, T.; Ohki, H.; Sumita, K.; Tatsuta, Y., Phys. Rev. D, J. High Energy Phys., J. High Energy Phys., J. High Energy Phys., 1406, 8, (2014)
[12] Abe, H.; Kawamura, J.; Sumita, K., Nucl. Phys. B, 888, 194, (2014)
[13] Abe, H.; Kobayashi, T.; Sumita, K.; Tatsuta, Y.; Abe, T.h.; Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M.; Abe, T.h.; Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M.; Tatsuta, Y.; Abe, H.; Kobayashi, T.; Otsuka, H.; Takano, Y., Phys. Rev. D, Nucl. Phys. B, Nucl. Phys. B, 894, 10, 374, (2015)
[14] Blumenhagen, R.; Kors, B.; Lust, D.; Stieberger, S., Phys. Rep., 445, 1, (2007)
[15] Marcus, N.; Sagnotti, A.; Siegel, W., Nucl. Phys. B, 224, 159, (1983)
[16] Arkani-Hamed, N.; Gregoire, T.; Wacker, J. G., J. High Energy Phys., 0203, (2002)
[17] Abe, H.; Choi, K. S.; Kobayashi, T.; Ohki, H., J. High Energy Phys., 0906, (2009)
[18] Di Vecchia, P.; Liccardo, A.; Marotta, R.; Pezzella, F., J. High Energy Phys., 0903, (2009)
[19] Dine, M.; Fischler, W.; Nappi, C. R.; Ovrut, B. A.; Alvarez-Gaume, L.; Claudson, M.; Wise, M. B., Phys. Lett. B, Phys. Lett. B, Nucl. Phys. B, 207, 96, (1982)
[20] Endo, M.; Yamaguchi, M.; Yoshioka, K.; Choi, K.; Jeong, K. S.; Okumura, K.i., Phys. Rev. D, J. High Energy Phys., 0509, (2005)
[21] Everett, L. L.; Kim, I. W.; Ouyang, P.; Zurek, K. M.; Everett, L. L.; Kim, I. W.; Ouyang, P.; Zurek, K. M., Phys. Rev. Lett., J. High Energy Phys., 0808, (2008)
[22] Abe, H.; Kobayashi, T.; Omura, Y., Phys. Rev. D, 76, (2007)
[23] Abe, H.; Kawamura, J.; Otsuka, H.; Abe, H.; Kawamura, J.; Omura, Y., PTEP, Proces. Teh. Energ. Poljopr., 2013, (2013)
[24] Kachru, S.; Kallosh, R.; Linde, A. D.; Trivedi, S. P., Phys. Rev. D, 68, (2003)
[25] Choi, K.; Falkowski, A.; Nilles, H. P.; Olechowski, M.; Pokorski, S.; Choi, K.; Falkowski, A.; Nilles, H. P.; Olechowski, M., J. High Energy Phys., Nucl. Phys. B, 718, 113, (2005)
[26] Lust, D.; Mayr, P.; Richter, R.; Stieberger, S., Nucl. Phys. B, 696, 205, (2004)
[27] Abe, H.; Higaki, T.; Kobayashi, T.; Abe, H.; Higaki, T.; Kobayashi, T., Phys. Rev. D, Nucl. Phys. B, 742, 187, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.