×

zbMATH — the first resource for mathematics

Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. (English) Zbl 1331.76039
Summary: Inertial lift forces are exploited within inertial microfluidic devices to position, segregate and sort particles or droplets. However, the forces and their focusing positions can currently only be predicted by numerical simulations, making rational device design very difficult. Here we develop theory for the forces on particles in microchannel geometries. We use numerical experiments to dissect the dominant balances within the Navier-Stokes equations and derive an asymptotic model to predict the lateral force on the particle as a function of particle size. Our asymptotic model is valid for a wide array of particle sizes and Reynolds numbers, and allows us to predict how focusing position depends on particle size.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76Z05 Physiological flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/smll.201202413 · doi:10.1002/smll.201202413
[2] DOI: 10.1017/S0022112074001431 · Zbl 0284.76076 · doi:10.1017/S0022112074001431
[3] DOI: 10.1017/S002211206200124X · Zbl 0109.43605 · doi:10.1017/S002211206200124X
[4] Happel, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (1982)
[5] Bramble, Maths Comput. 37 pp 1– (1981)
[6] Batchelor, An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[7] DOI: 10.1017/S0022112098003474 · Zbl 0935.76025 · doi:10.1017/S0022112098003474
[8] DOI: 10.1038/189209a0 · doi:10.1038/189209a0
[9] DOI: 10.1017/S0022112089001564 · Zbl 0675.76038 · doi:10.1017/S0022112089001564
[10] DOI: 10.1017/S0022112065000824 · Zbl 0218.76043 · doi:10.1017/S0022112065000824
[11] DOI: 10.1017/S0022112061000640 · Zbl 0103.19503 · doi:10.1017/S0022112061000640
[12] Perry, Chemical Engineers’ Handbook (1950)
[13] DOI: 10.1201/9781420050288 · doi:10.1201/9781420050288
[14] DOI: 10.1017/S0022112091001751 · Zbl 0721.76029 · doi:10.1017/S0022112091001751
[15] DOI: 10.1017/S0022112065001428 · doi:10.1017/S0022112065001428
[16] DOI: 10.1039/c1lc20330d · doi:10.1039/c1lc20330d
[17] DOI: 10.1073/pnas.1010297107 · doi:10.1073/pnas.1010297107
[18] DOI: 10.1103/RevModPhys.79.883 · Zbl 1205.76078 · doi:10.1103/RevModPhys.79.883
[19] DOI: 10.1017/S0022112076002498 · Zbl 0342.76039 · doi:10.1017/S0022112076002498
[20] DOI: 10.1039/c3lc50689d · doi:10.1039/c3lc50689d
[21] DOI: 10.1017/S0022112062001111 · doi:10.1017/S0022112062001111
[22] DOI: 10.1017/S002211206200110X · Zbl 0118.43203 · doi:10.1017/S002211206200110X
[23] DOI: 10.1175/1520-0469(1972)029&lt;0728:ATAESO&gt;2.0.CO;2 · doi:10.1175/1520-0469(1972)029<0728:ATAESO>2.0.CO;2
[24] DOI: 10.1146/annurev.fl.12.010180.002251 · doi:10.1146/annurev.fl.12.010180.002251
[25] Lamb, Hydrodynamics (1945)
[26] Di Carlo, Phys. Rev. Lett. 102 (2009)
[27] Kim, Microhydrodynamics: Principles and Selected Applications (2005)
[28] DOI: 10.1017/S0022112071001848 · Zbl 0266.76023 · doi:10.1017/S0022112071001848
[29] DOI: 10.1039/b919495a · doi:10.1039/b919495a
[30] DOI: 10.1016/0301-9322(77)90001-5 · Zbl 0366.76020 · doi:10.1016/0301-9322(77)90001-5
[31] DOI: 10.1063/1.3478311 · Zbl 06415437 · doi:10.1063/1.3478311
[32] DOI: 10.1016/0009-2509(68)87059-9 · doi:10.1016/0009-2509(68)87059-9
[33] DOI: 10.1017/S0022112094004477 · Zbl 0823.76086 · doi:10.1017/S0022112094004477
[34] DOI: 10.1017/CBO9781139172189 · doi:10.1017/CBO9781139172189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.