×

zbMATH — the first resource for mathematics

Goodness of fit in restricted measurement error models. (English) Zbl 1331.62332
Summary: The restricted measurement error model is employed when certain study variables are not observable by direct measurement and if some information about the unknown regression coefficients is available a priori. In this study, we present a method for checking the goodness of fit in the restricted measurement error model. We obtain the goodness-of-fit statistics based on the concept of coefficient of determination and their asymptotic distributions are derived. The results of simulations are also presented to demonstrate the finite sample behaviour of the estimators.

MSC:
62J05 Linear regression; mixed models
62H12 Estimation in multivariate analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cheng, C.-L.; Kukush, A., Non-existence of the first moment of the adjusted least squares estimator in multivariate errors-in-variables model, Metrika, 64, 1, 41-46, (2006) · Zbl 1098.62085
[2] Cheng, C.-L.; Shalabh; Garg, G., Coefficient of determination for multiple measurement error models, J. Multivariate Anal., 123, 137-152, (2014) · Zbl 1281.62152
[3] Cheng, C.-L.; Van Ness, J. W., On the unreplicated ultrastructural model, Biometrika, 78, 442-445, (1991) · Zbl 0736.62021
[4] Cheng, C.-L.; Van Ness, J. W., Statistical regression with measurement errors, (1999), Arnold London
[5] Cramer, J. S., Mean and variance of \(R^2\) in small and moderate samples, J. Econometrics, 35, 253-266, (1987) · Zbl 0617.62117
[6] Dolby, G. R., The ultrastructural relation: a synthesis of the functional and structural relations, Biometrika, 63, 39-50, (1976) · Zbl 0355.62065
[7] Dunn, G., Design and analysis of reliability studies, (1989), Oxford University Press New York
[8] Eshima, N.; Tabata, M., Entropy coefficient of determination for generalized linear models, Comput. Statist. Data Anal., 54, 5, 1381-1389, (2010) · Zbl 05689680
[9] Eshima, N.; Tabata, M., Three predictive power measures for generalized linear models: the entropy coefficient of determination, the entropy correlation coefficient and the regression correlation coefficient, Comput. Statist. Data Anal., 55, 11, 3049-3058, (2011) · Zbl 1218.62071
[10] Fuller, W. A., Measurement error models, (1987), John Wiley · Zbl 0800.62413
[11] Gleser, L. J., A note on G.R. dolby’s ultrastructural model, Biometrika, 72, 117-124, (1985) · Zbl 0562.62060
[12] Gleser, L. J., The importance of assessing measurement reliability in multivariate regression, J. Amer. Statist. Assoc., 87, 419, 696-707, (1992) · Zbl 0781.62102
[13] Gleser, L. J., Estimators of slopes in linear errors-in-variables regression models when the predictors have known reliability matrix, Statist. Probab. Lett., 17, 113-121, (1993) · Zbl 0792.62057
[14] Hilliard, J. E.; Lloyd, W. P., Coefficient of determination in a simultaneous equation model: a pedagogic note, J. Bus. Res., 8, 1, 1-6, (1980)
[15] Hong, C. S.; Ham, J. H.; Kim, H. I., Variable selection for logistic regression model using adjusted coefficients of determination, Korean J. Appl. Statist., 18, 2, 435-443, (2005)
[16] Hössjer, O., On the coefficient of determination for mixed regression models, J. Statist. Plann. Inference, 138, 10, 3022-3038, (2008) · Zbl 1140.62053
[17] Huang, L.-S.; Chen, J., Analysis of variance, coefficient of determination and F-test for local polynomial regression, Ann. Statist., 36, 5, 2085-2109, (2008) · Zbl 1148.62055
[18] Jain, Kanchan; Singh, Sukhbir; Sharma, Suresh, Restricted estimation in multivariate measurement error regression model, J. Multivariate Anal., 102, 2, 264-280, (2011) · Zbl 1327.62403
[19] Knight, J. L., The coefficient of determination and simultaneous equation systems, J. Econometrics, 14, 2, 265-270, (1980) · Zbl 0456.62084
[20] Li, Wenxue; Yang, Hu, Weighted stochastic restricted estimation in linear measurement error models, Commun. Stat. - Simul. Comput., 42, 4, 932-968, (2013) · Zbl 1347.62039
[21] Liao, J. G.; McGee, D., Adjusted coefficients of determination for logistic regression, Amer. Statist., 57, 3, 161-165, (2003) · Zbl 1182.62148
[22] Lipsitz, S. R.; Leong, T.; Ibrahim, J.; Lipshultz, S., A partial correlation coefficient and coefficient of determination for multivariate normal repeated measures data, Statistician, 50, 1, 87-95, (2001)
[23] Malinvaud, E., Statistical methods of econometrics, (1966), North-Holland Publishing Co. Amsterdam · Zbl 0173.21705
[24] Marchand, Éric, On moments of beta mixtures, the noncentral beta distribution, and the coefficient of determination, J. Stat. Comput. Simul., 59, 2, 161-178, (1997) · Zbl 0886.62018
[25] Marchand, Éric, Point estimation of the coefficient of determination, Statist. Decisions, 19, 2, 137-154, (2001) · Zbl 0969.62004
[26] McKean, J. W.; Sievers, G. L., Coefficients of determination for least absolute deviation analysis, Statist. Probab. Lett., 5, 1, 49-54, (1987) · Zbl 0612.62105
[27] Nagelkerke, N. J.D., A note on a general definition of the coefficient of determination, Biometrika, 78, 3, 691-692, (1991) · Zbl 0741.62069
[28] Ohtani, K., The density functions of \(R^2\) and \(\overline{R}^2\), and their risk performance under asymmetric loss in misspecified linear regression models, Ecol. Modell., 11, 4, 463-471, (1994)
[29] Ohtani, K.; Giles, D. E.A., The absolute error risks of regression goodness-of-fitn measures, J. Quant. Econom., 12, 17-26, (1996)
[30] Ohtani, K.; Hasegawa, H., On small scale properties of \(R^2\) in a linear regression model with multivariate \(t\) errors and proxy variables, Econometric Theory, 9, 504-515, (1973)
[31] Patriota, A. G.; Bolfarine, H.; Arellano-Valle, R. B., A multivariate ultra-structural errors-in-variables model with equation error, J. Multivariate Anal., 102, 386-392, (2011), H · Zbl 1352.62045
[32] Rao, C. R.; Toutenburg, H.; Heumann, C.; Shalabh, Linear models and generalizations: least squares and alternatives, (2008), Springer Berlin · Zbl 1151.62063
[33] Renaud, O.; Victoria-Feser, M.-P., A robust coefficient of determination for regression, J. Statist. Plann. Inference, 140, 7, 1852-1862, (2010) · Zbl 1184.62119
[34] Schneeweiss, H., Consistent estimation of a regression with errors in the variables, Metrika, 23, 101-115, (1976) · Zbl 0341.62051
[35] Schneeweiss, H., Note on a linear model with errors in the variables and with trend, Statist. Papers, 32, 261-264, (1991)
[36] Shalabh, Improved estimation in measurement error models through Stein-rule procedure, J. Multivariate Anal., 67, 35-48, (1998) · Zbl 0913.62059
[37] Shalabh, Corrigendum, J. Multivariate Anal., 74, 162, (2000)
[38] Shalabh, Consistent estimation of coefficients in measurement error models under non-normality, J. Multivariate Anal., 86, 2, 227-241, (2003) · Zbl 1026.62052
[39] Shalabh; Garg, G.; Misra, N., Restricted regression estimation in measurement error models, Comput. Statist. Data Anal., 52, 2, 1149-1166, (2007) · Zbl 1452.62511
[40] Shalabh; Garg, G.; Misra, N., Use of prior information in the consistent estimation of regression coefficients in measurement error models, J. Multivariate Anal., 100, 7, 1498-1520, (2009) · Zbl 1162.62064
[41] Shalabh; Garg, G.; Misra, N., Consistent estimation of regression coefficients in measurement error model using stochastic prior information, Statist. Papers, 51, 717-748, (2010) · Zbl 1247.62141
[42] Shalabh; Garg, G.; Misra, N., Estimation of regression coefficients in a restricted measurement error model using instrumental variables, Comm. Statist. Theory Methods, 40, 3614-3629, (2011) · Zbl 1315.62060
[43] Shalabh; Gleser, Leon J.; Rosen, Ori, On the usefulness of knowledge of error variances in the consistent estimation of an unreplicated ultrastructural model, J. Stat. Comput. Simul., 74, 6, 391-417, (2004) · Zbl 1063.62097
[44] Singh, Sukhbir; Jain, Kanchan; Sharma, Suresh, Using stochastic prior information in consistent estimation of regression coefficients in replicated measurement error model, J. Multivariate Anal., 111, 198-212, (2012) · Zbl 1259.62023
[45] Smith, M. D., Comparing approximations to the expectation of quadratic forms in normal variables, Econometric Rev., 15, 81-95, (1996) · Zbl 0914.62011
[46] Srivastava, A. K.; Shalabh, Consistent estimation for the non-normal ultrastructural model, Statist. Probab. Lett., 34, 67-73, (1997) · Zbl 0899.62033
[47] Srivastava, A. K.; Shalabh, Improved estimation of slope parameter in a linear ultrastructural model when measurement errors are not necessarily normal, J. Econometrics, 78, 153-157, (1997) · Zbl 0877.62106
[48] Srivastava, A. K.; Shobhit, A family of estimators for the coefficient of determination in linear regression models, J. Appl. Stat. Sci., 11, 2, 133-144, (2002) · Zbl 1068.62076
[49] Srivastava, A. K.; Srivastava, V. K.; Ullah, A., The coefficient of determination and its adjusted version in linear regression models, Econometric Rev., 14, 229-240, (1995) · Zbl 0832.62061
[50] Tanaka, J. S.; Huba, G. J., A general coefficient of determination for covariance structure models under arbitrary GLS estimation, British J. Math. Statist. Psych., 42, 2, 233-239, (1989) · Zbl 0726.62171
[51] Tjur, T., Coefficients of determination in logistic regression models-a new proposal: the coefficient of discrimination, Amer. Statist., 63, 4, 366-372, (2009) · Zbl 1182.62149
[52] Toutenburg, H., Prior information in linear models, (1982), John Wiley Chichester · Zbl 0468.62056
[53] Ullah, A.; Srivastava, V. K., Moments of the ratio of quadratic forms in non-normal variables with econometric examples, J. Econometrics, 62, 129-142, (1994) · Zbl 0796.62109
[54] van der Linde, A.; Tutz, G., On association in regression: the coefficient of determination revisited, Statistics, 42, 1, 1-24, (2008) · Zbl 1148.62058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.