×

zbMATH — the first resource for mathematics

Specification testing for transformation models with an application to generalized accelerated failure-time models. (English) Zbl 1331.62247
Summary: This paper provides a nonparametric test of the specification of a transformation model. Specifically, we test whether an observable outcome \(Y\) is monotonic in the sum of a function of observable covariates \(X\) plus an unobservable error \(U\). Transformation models of this form are commonly assumed in economics, including, e.g., standard specifications of duration models and hedonic pricing models. Our test statistic is asymptotically normal under local alternatives and consistent against nonparametric alternatives violating the implied restriction. Monte Carlo experiments show that our test performs well in finite samples. We apply our results to test for specifications of generalized accelerated failure-time (GAFT) models of the duration of strikes.

MSC:
62G10 Nonparametric hypothesis testing
62N05 Reliability and life testing
62P20 Applications of statistics to economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbring, J.H., Chiappori, P., Zavadil, T., 2008. Better safe than sorry? Ex ante and ex post moral hazard in dynamic insurance data. Working Paper, VU University Amsterdam and Columbia University.
[2] Altonji, J.; Matzkin, R., Cross section and panel data estimators for nonseparable models with endogenous regressors, Econometrica, 73, 1053-1102, (2005) · Zbl 1152.62405
[3] Barrientos-Marin, J.; Sperlich, S., The size problem of bootstrap tests when the null is non- or semiparametric, Rev. Colombiana Estadíst., 33, 307-319, (2010)
[4] Bierens, H.; Ploberger, W., Asymptotic theory of integrated conditional moment tests, Econometrica, 65, 1129-1151, (1997) · Zbl 0927.62085
[5] Blundell, R.; Powell, J., Endogeneity in nonparametric and semiparametric regression models, (Dewatripont, M.; Hansen, L.; Turnovsky, S., Advances in Economics and Econometrics, (2003), Cambridge University Press Cambridge), 294-311
[6] Blundell, R.; Powell, J., Endogeneity in semiparametric binary response models, Rev. Econom. Stud., 71, 581-913, (2004)
[7] Cameron, C.; Trivedi, P., Microeconometrics: methods and applications, (2005), Cambridge University Press New York · Zbl 1156.62092
[8] Chiappori, P.-A., Komunjer, I., Kristensen, D., 2013. Nonparametric identification and estimation of transformation models. Working paper, Department of Economics, Columbia University. · Zbl 1337.62072
[9] Cox, D. R., Regression models and life tables (with discussion), J. R. Stat. Soc. Ser. B, 34, 187-220, (1972) · Zbl 0243.62041
[10] Ekeland, I.; Heckman, J. J.; Nesheim, L., Identification and estimation of hedonic models, J. Political Economy, 112, 60-109, (2004)
[11] Engle, R. F., The econometrics of ultra-high-frequency data, Econometrica, 68, 1-22, (2000) · Zbl 1056.91535
[12] Fan, J.; Jiang, J., Nonparametric inference for additive models, J. Amer. Statist. Assoc., 100, 890-907, (2005) · Zbl 1117.62328
[13] Fan, J.; Yao, Q.; Tong, H., Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems, Biometrika, 83, 189-206, (1996) · Zbl 0865.62026
[14] Fan, J.; Zhang, C.; Zhang, J., Generalized likelihood ratio statistics and wilks phenomenon, Ann. Statist., 29, 153-193, (2001) · Zbl 1029.62042
[15] Fernandes, M.; Grammig, J., Nonparametric specification tests for conditional duration models, J. Econometrics, 127, 35-68, (2005) · Zbl 1337.62216
[16] Gozalo, P.; Linton, O., Testing additivity in generalized nonparametric regression models with estimated parameters, J. Econometrics, 104, 1-48, (2001) · Zbl 0978.62032
[17] Greene, W., Econometric analysis, (2011), Prentice Hall NJ
[18] Hansen, B. E., Uniform convergence rates for kernel estimation with dependent data, Econometric Theory, 24, 726-748, (2008) · Zbl 1284.62252
[19] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Ann. Statist., 21, 1926-1947, (1993) · Zbl 0795.62036
[20] Heckman, J. J.; Matzkin, R.; Nesheim, L., Estimation and simulation of hedonic models, (Kehoe, T.; Srinivasan, T.; Whalley, J., Frontiers in Applied General Equilibrium, (2005), Cambridge University Press Cambridge.), 277-340
[21] Heckman, J. J.; Robb, R., Alternative methods for solving the problem of selection bias in evaluating the impact of treatments on outcomes, (Wainer, H., Drawing Inferences from Self-Selected Samples, (1986), Springer-Verlag New York), 63-107, Mahwah, NJ: Lawrence Erlbaum Associates
[22] Heckman, J. J.; Singer, B., A method for minimizing the impact of distributional assumptions in econometric models for duration data, Econometrica, 52, 271-320, (1984) · Zbl 0547.62077
[23] Hoderlein, S.; Mammen, E., Identification of marginal effects in nonseparable models without monotonicity, Econometrica, 75, 1513-1518, (2007) · Zbl 1133.91052
[24] Hoderlein, S., Su, L., White, H., Yang, T., 2014. Testing for monotonicity in unobservables under unconfoundedness. Working paper, Dept. of Economics, Boston College. · Zbl 1420.62198
[25] Horowitz, J. L., Semiparametric estimation of a regression model with an unknown transformation of the dependent variable, Econometrica, 64, 103-137, (1996) · Zbl 0861.62029
[26] Horowitz, J. L., Nonparametric estimation of a generalized additive model with an unknown link function, Econometrica, 69, 499-513, (2001) · Zbl 0999.62032
[27] Horowitz, J. L., Nonparametric additive models, (Racine, J.; Su, L.; Ullah, A., The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics, (2014), Oxford University Press Oxford), 129-148
[28] Horowitz, J.; Lee, S., Nonparametric estimation of an additive quantile regression model, J. Amer. Statist. Assoc., 100, 1238-1249, (2005) · Zbl 1117.62355
[29] Horowitz, J. L.; Mammen, E., Nonparametric estimation of an additive model with a link function, Ann. Statist., 36, 2412-2443, (2004) · Zbl 1069.62035
[30] Horowitz, J. L.; Mammen, E., Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions, Ann. Statist., 35, 2589-2619, (2007) · Zbl 1129.62034
[31] Horowitz, J. L.; Mammen, E., Oracle-efficient estimation of an additive model with an unknown link function, Econometric Theory, 27, 582-608, (2011) · Zbl 1218.62034
[32] Ichimura, H., Lee, S., 2011, Identification and estimation of a nonparametric transformation model. Working paper, Department of Economics, Tokyo University.
[33] Imbens, G.; Newey, W., Identification and estimation of triangular simultaneous equations models without additivity, Econometrica, 77, 1481-1512, (2009) · Zbl 1182.62215
[34] Jacho-Chávez, D.; Lewbel, A.; Linton, O., Identification and nonparametric estimation of a transformed additively separable model, J. Econometrics, 156, 392-407, (2010) · Zbl 1431.62158
[35] Keifer, N. M., Economic duration data and hazard functions, J. Econ. Literature, 26, 646-679, (1988)
[36] Kennan, J. E., The duration of contract strikes in US manufacturing, J. Econometrics, 28, 5-28, (1985)
[37] Lancaster, T., Econometric models for the duration of unemployment, Econometrica, 47, 939-956, (1979) · Zbl 0412.90018
[38] Li, Q.; Racine, J., Nonparametric estimation of distributions with categorical and continuous data, J. Multivariate Anal., 86, 266-292, (2003) · Zbl 1019.62030
[39] Lu, X.; White, H., Testing for separability in structural equations, J. Econometrics, 182, 14-26, (2014) · Zbl 1311.62068
[40] Masry, E., Multivariate local polynomial regression for time series: uniform strong consistency rates, J. Time Ser. Anal., 17, 571-599, (1996) · Zbl 0876.62075
[41] Mata, J.; Portugal, P., Life duration of new firms, J. Ind. Econ., 42, 227-245, (1994)
[42] Politis, D.; Romano, J.; Wolf, M., Subsampling, (1999), Springer-Verlag New York · Zbl 0931.62035
[43] Ridder, G., The nonparametric identification of generalized accelerated failure-time models, Rev. Econom. Stud., 57, 167-181, (1990) · Zbl 0711.62087
[44] Rodriguez-Poo, J. M.; Sperlich, S.; Vieu, P., Nonparametric specification testing when the null hypothesis is non- or semiparametric, Econometric Theory, (2014), forthcoming
[45] Su, L.; Tu, Y.; Ullah, A., Testing additive separability of error term in nonparametric structural models, Econometric Rev., (2014), forthcoming
[46] Van den Berg, G., Duration models: specification, identification and multiple durations, (Heckman, J. J.; Leamer, E. E., Handbook of Econometrics, vol. 5, (2001), Elsevier, B.V), 3381-3460
[47] White, H.; Lu, X., Causal diagrams for treatment effect estimation with application to selection of efficient covariates, Rev. Econ. Stat., 93, 1453-1459, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.