zbMATH — the first resource for mathematics

Higher order tangent spaces and influence functions. (English) Zbl 1331.62111
Summary: We review higher order tangent spaces and influence functions and their use to construct minimax efficient estimators for parameters in high-dimensional semiparametric models.

62F10 Point estimation
62G35 Nonparametric robustness
62-02 Research exposition (monographs, survey articles) pertaining to statistics
PDF BibTeX Cite
Full Text: DOI Euclid
[1] Begun, J. M., Hall, W. J., Huang, W.-M. and Wellner, J. A. (1983). Information and asymptotic efficiency in parametric-nonparametric models. Ann. Statist. 11 432-452. · Zbl 0526.62045
[2] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models . Johns Hopkins Univ. Press, Baltimore, MD. · Zbl 0786.62001
[3] Bolthausen, E., Perkins, E. and van der Vaart, A. (2002). Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1781 . Springer, Berlin.
[4] KoŇ°evnik, Ju. A. and Levit, B. Ja. (1976). On a nonparametric analogue of the information matrix. Teor. Veroyatn. Primen. 21 759-774.
[5] Li, L., Tchetgen Tchetgen, E., van der Vaart, A. and Robins, J. M. (2011). Higher order inference on a treatment effect under low regularity conditions. Statist. Probab. Lett. 81 821-828. · Zbl 1218.62021
[6] Lindsay, B. G. (1983). Efficiency of the conditional score in a mixture setting. Ann. Statist. 11 486-497. · Zbl 0583.62024
[7] Pfanzagl, J. (1982). Contributions to a General Asymptotic Statistical Theory. Lecture Notes in Statistics 13 . Springer, New York. · Zbl 0512.62001
[8] Pfanzagl, J. (1985). Asymptotic Expansions for General Statistical Models. Lecture Notes in Statistics 31 . Springer, Berlin. · Zbl 0578.62003
[9] Robins, J., Li, L., Tchetgen, E. and van der Vaart, A. (2008). Higher order influence functions and minimax estimation of nonlinear functionals. In Probability and Statistics : Essays in Honor of David A. Freedman. Inst. Math. Stat. Collect. 2 335-421. IMS, Beachwood, OH. · Zbl 05556804
[10] Robins, J., Li, L., Tchetgen, E. and van der Vaart, A. W. (2009). Quadratic semiparametric von Mises calculus. Metrika 69 227-247. · Zbl 1433.62102
[11] Robins, J. and Rotnitzky, A. (2001). Comment on the Bickel and Kwon article “Inference for semiparametric models: Some questions and an answer.” Statist. Sinica 11 920-936.
[12] Robins, J., Tchetgen Tchetgen, E., Li, L. and van der Vaart, A. (2009). Semiparametric minimax rates. Electron. J. Stat. 3 1305-1321. · Zbl 1326.62080
[13] Robins, J. M. and Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression models with missing data. J. Amer. Statist. Assoc. 90 122-129. · Zbl 0818.62043
[14] Small, C. G. and McLeish, D. L. (1994). Hilbert Space Methods in Probability and Statistical Inference . Wiley, New York. · Zbl 0838.62002
[15] Tchetgen, E., Li, L., Robins, J. and van der Vaart, A. (2008). Minimax estimation of the integral of a power of a density. Statist. Probab. Lett. 78 3307-3311. · Zbl 1151.62314
[16] van der Vaart, A. (1991). On differentiable functionals. Ann. Statist. 19 178-204. · Zbl 0732.62035
[17] van der Vaart, A. W. (1988). Statistical Estimation in Large Parameter Spaces. CWI Tract 44 . Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam. · Zbl 0629.62035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.