×

zbMATH — the first resource for mathematics

A variational approach to connecting orbits in nonlinear dynamical systems. (English) Zbl 1331.37084
Summary: We propose a variational method for determining homoclinic and heteroclinic orbits including spiral-shaped ones in nonlinear dynamical systems. Starting from a suitable initial curve, a homotopy evolution equation is used to approach a true connecting orbit. The procedure is an extension of a variational method that has been used previously for locating cycles, and avoids the need for linearization in search of simple connecting orbits. Examples of homoclinic and heteroclinic orbits for typical dynamical systems are presented. In particular, several heteroclinic orbits of the steady-state Kuramoto-Sivashinsky equation are found, which display interesting topological structures, closely related to those of the corresponding periodic orbits.

MSC:
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Software:
HomCont
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Glendinning, P., Global bifurcations in flows, (New Directions in Dynamical Systems, (1988), Cambridge University Press Cambridge) · Zbl 0651.58023
[2] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1983), Springer-Verlag New York · Zbl 0515.34001
[3] Fife, P. C., Mathematical aspects of reacting and diffusing systems, Lect. Notes Biomath., vol. 28, (1979), Springer-Verlag New York · Zbl 0403.92004
[4] Silva, C. P., IEEE Trans. Circuits Syst., 40, 675, (1993)
[5] Shilʼnikov, L. P., Sov. Math. Dokl., 6, 163, (1965)
[6] Shilʼnikov, L. P., Sb. Math., 10, 91, (1970)
[7] Yu, S., J. Differ. Equ., 66, 230, (1987)
[8] Bogdan, K.; Vitaly, V., Nonlinear Anal., 55, 467, (2003)
[9] Zhao, C., Comput. Math. Appl., 43, 755, (2002)
[10] Shang, D.; Han, M., Appl. Math. Comput., 163, 621, (2005)
[11] Doedel, E. J.; Kernévez, J. P., Applied maths, (1986), unpublished
[12] Doedel, E. J.; Friedman, M. J., J. Comput. Appl. Math., 26, 155, (1989)
[13] Liu, Y.; Liu, L.; Tang, T., J. Comput. Phys., 111, 373, (1994)
[14] Liu, L.; Moore, G.; Russell, R., SIAM J. Sci. Comput., 18, 69, (1997)
[15] Korostyshevskiy, V. R.; Wanner, T. A., J. Comput. Appl. Math., 206, 986, (2007)
[16] Krauskopf, B.; Rieß, T., Nonlinearity, 21, 1655, (2008)
[17] Oldeman, B. E.; Champneys, A. R.; Krauskopf, B., Int. J. Bifurc. Chaos Appl. Sci. Eng., 13, 2977, (2003)
[18] Friedman, M. J.; Doedel, E. J., SIAM J. Numer. Anal., 28, 789, (1991)
[19] Beyn, W. J., (Rose, D., Continuation and Bifurcations: Numerical Techniques and Applications, (1990), Kluwer Dordrecht), 169-181
[20] Beyn, W. J., SIAM J. Numer. Anal., 10, 379, (1990)
[21] Bader, G.; Ascher, U., SIAM J. Sci. Stat. Comput., 8, 483, (1987)
[22] Wright, R.; Cash, J. R.; Moore, G., Numer. Algorithms, 7, 205, (1994)
[23] Cash, J. R.; Moore, G.; Wright, R. W., ACM Trans. Math. Softw., 27, 245, (2001)
[24] Auzinger, W.; Koch, O.; Weinmuller, E., SIAM J. Numer. Anal., 42, 2366, (2005)
[25] Russell, R. D.; Christiansen, J., SIAM J. Numer. Anal., 15, 59, (1978)
[26] Ascher, U.; Christiansen, J.; Russell, R. D., ACM Trans. Math. Softw., 7, 209, (1981)
[27] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., ACM Trans. Math. Softw., 29, 141, (2003)
[28] Champneys, A. R.; Kuznetsov, Y. A., Int. J. Bifurc. Chaos Appl. Sci. Eng., 4, 785, (1994)
[29] Champneys, A. R.; Kuznetsov, Y. A.; Sandstede, B., Int. J. Bifurc. Chaos Appl. Sci. Eng., 6, 867, (1996)
[30] Doedel, with major contributions from Champneys, Fairgrieve, Kuznetsov, Oldeman, Paffenroth, Sandstede, Wang, Zhang, AUTO-07P: Continuation and bifurcation software for ordinary differential equations
[31] Mather, J. N., Ann. Inst. Fourier, 43, 1349, (1993)
[32] Cvitanović, P.; Lan, Y., (Proceedings of the 10th International Workshop on Multiparticle Production: Correlations and Fluctuations in QCD, (2003), World Scientific Singapore)
[33] Lan, Y.; Cvitanović, P., Phys. Rev. E, 69, 01621, (2004)
[34] Dong, C.; Lan, Y., Commun. Nonlinear Sci. Numer. Simul., 19, 2140, (2014)
[35] Zhou, X.; Ren, W.; Weinan, E., J. Chem. Phys., 128, 104111, (2008)
[36] Doedel, E. J., Congr. Numer., 30, 265, (1981)
[37] Doedel, E. J.; Keller, H. B.; Kernévez, J. P., Int. J. Bifurc. Chaos Appl. Sci. Eng., 1, 745, (1991)
[38] Troy, W. C., J. Differ. Equ., 82, 269, (1989)
[39] Michelson, D., Physica D, 19, 89, (1986)
[40] Doedel, E. J.; Krauskopf, B.; Osinga, H. M., Nonlinearity, 19, 2947, (2006)
[41] (Krauskopf, B.; Osinga, H. M.; Galán, J., Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, (2007), Springer-Verlag New York) · Zbl 1117.65005
[42] Press, W. H.; Teukolsky, S. A.; Veterling, W. T.; Flannery, B. P., Numerical recipes in C, (1992), Cambridge University Press New York
[43] Lorenz, E. N., J. Atmos. Sci., 20, 130, (1963)
[44] Strogatz, S. H., Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering, (2000), Perseus Publishing Cambridge, Massachusetts
[45] Hodgkin, A. L.; Huxley, A. F., J. Physiol., 117, 500, (1952)
[46] Duan, L. X.; Lu, Q. S., Int. J. Nonlinear Sci. Numer. Simul., 7, 59, (2006)
[47] Liu, S. Q.; Fan, T.; Lu, Q. S., Int. J. Nonlinear Sci. Numer. Simul., 6, 133, (2005)
[48] Zhang, G. J.; Xu, J. X.; Yao, H.; Wei, R. X., Int. J. Nonlinear Sci. Numer. Simul., 7, 447, (2006)
[49] Nagumo, J. S.; Arimoto, S.; Yoshizawa, S., Proc. IRE, 50, 2061, (1962)
[50] Sparrow, C., The Lorenz equations: bifurcations, chaos, and strange attractors, (1982), Springer-Verlag New York · Zbl 0504.58001
[51] Doedel, E. J.; Kooi, B. W.; Kuznetsov, Y. A.; Voorn, G. A.K., Int. J. Bifurc. Chaos Appl. Sci. Eng., 18, 1889, (2008)
[52] Kuramoto, Y., Prog. Theor. Phys. Suppl., 64, 346, (1978)
[53] Sivashinsky, G. I., Acta Astron., 4, 1177, (1977)
[54] Cohen, B. I.; Krommes, J. A.; Tang, W. M.; Rosenbluth, M. N., Nucl. Fusion, 16, 971, (1972)
[55] Quey, R. E.; Mahajan, S. M.; Rutherford, P. H.; Tang, W. M., Phys. Rev. Lett., 34, 391, (1974)
[56] Benney, D. J., J. Math. Phys., 45, 150, (1966)
[57] Hooper, A. P.; Grimshaw, R., Phys. Fluids, 28, 37, (1985) · Zbl 0565.76051
[58] Kent, P.; Elgin, J., Nonlinearity, 5, 899, (1992)
[59] Lau, Y. T., Int. J. Bifurc. Chaos Appl. Sci. Eng., 2, 543, (1992)
[60] Greene, J. M.; Kim, J. S., Physica D, 33, 99, (1988)
[61] Cvitanović, P.; Davidchack, R. L.; Siminos, E., SIAM J. Appl. Dyn. Syst., 9, 1, (2010)
[62] Díez, C.; Jorba, À.; Simó, C., Celest. Mech., 50, 13, (1990)
[63] Simó, C., Effective computations in celestial mechanics and astrodynamics, (Rumyantsev, V. V.; Karapetyan, A. V., Modern Methods of Analytical Mechanics and Their Applications, (1998), Springer-Verlag) · Zbl 0920.70003
[64] Jorba, À.; Simó, C., SIAM J. Math. Anal., 27, 1704, (1996)
[65] Jorba, À.; Olmedo, E., SIAM J. Appl. Dyn. Syst., 8, 1382, (2009)
[66] Lan, Y.; Chandre, C.; Cvitanović, P., Phys. Rev. E, 74, 046206, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.