zbMATH — the first resource for mathematics

Synchronized oscillatory dynamics for a 1-D model of membrane kinetics coupled by linear bulk diffusion. (English) Zbl 1331.35038

35B32 Bifurcations in context of PDEs
35B20 Perturbations in context of PDEs
35B35 Stability in context of PDEs
92B25 Biological rhythms and synchronization
Full Text: DOI
[1] S. M. Baer, T. Erneux, and J. Rinzel, The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance, SIAM J. Appl. Math., 49 (1989), pp. 55–71. · Zbl 0683.34039
[2] R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), pp. 413–439. · Zbl 0813.92010
[3] W. Y. Chiang, Y. X. Li, and P. Y. Lai, Simple models for quorum sensing: Nonlinear dynamical analysis, Phys. Rev. E., 84 (2011), 041921.
[4] T. Chou and M. R. D’Orsogna, Multistage adsorption of diffusing macromolecules and viruses, J. Chem. Phys., 127 (2007), 105101.
[5] J. Ding and A. Zhu, Eigenvalues of rank-one updated matrices with some applications, Appl. Math. Lett., 20 (2007), pp. 1223–1226. · Zbl 1139.15003
[6] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, Philadelphia, 2002. · Zbl 1003.68738
[7] P. A. Fletcher and Y. X. Li, An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons, Biophys. J., 96 (2009), pp. 4514–4524.
[8] B. Friedman, Principles and Techniques of Applied Mathematics, Appl. Math. Ser., John Wiley & Sons, New York, Chapman & Hall, London, 1956. · Zbl 0072.12806
[9] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, UK, 1990. · Zbl 0837.92009
[10] A. Gomez-Marin, J. Garcia-Ojalvo, and J. M. Sancho, Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling, Phys. Rev. Lett., 98 (2007), 168303.
[11] J. Gou and M. J. Ward, Oscillatory dynamics for a coupled membrane-bulk diffusion model with Fitzhugh–Nagumo kinetics, SIAM J. Appl. Math., to appear. · Zbl 1347.35032
[12] J. Gou, Y. X. Li, and W. Nagata, Interactions of in-phase and anti-phase synchronies in two cells coupled by a spatially diffusing chemical: Double-Hopf bifurcations, IMA J. Appl. Math., submitted.
[13] A. Khadra and Y. X. Li, A model for the pulsatile secretion of gonadotrpin-releasing hormone from synchronized hypothalamic neurons, Biophys. J., 91 (2006), pp. 74–83.
[14] B. N. Kholodenko, Cell-signalling dynamics in time and space, Nat. Rev. Mol. Cell Biol., 7 (2006), pp. 165–176.
[15] C. Kuehn, A mathematical framework for critical transitions: Bifurcations, fast/slow systems and stochastic dynamics, Phys. D, 240 (2011), pp. 1020–1035. · Zbl 1225.35242
[16] P. Y. Lai, private communication, National Central University, Chungli, Taiwan, 2013.
[17] H. Levine and W. J. Rappel, Membrane bound Turing patterns, Phys. Rev. E., 72 (2005), 061912.
[18] C. Levy and D. Iron, Dynamics and stability of a three-dimensional model of cell signal transduction, J. Math. Biol., 67 (2013), pp. 1691–1728. · Zbl 1283.35151
[19] Y. X. Li and A. Khadra, Robust synchrony and rhythmogenesis in endocrine neurons via autocrine regulations in vitro and in vivo, Bull. Math. Biol., 70 (2008), pp. 2103–2125. · Zbl 1170.92006
[20] P. Mandel and T. Erneux, The slow passage through a steady bifurcation: Delay and memory effects, J. Statist. Phys., 48 (1987), pp. 1059–1070.
[21] J. Müller and H. Uecker, Approximating the dynamics of communicating cells in a diffusive medium by ODEs—Homogenization with localization, J. Math. Biol., 67 (2013), pp. 1023–1065. · Zbl 1277.35036
[22] F. Naqib, T. Quail, L. Musa, H. Vulpe, J. Nadeau, J. Lei, and L. Glass, Tunable oscillations and chaotic dynamics in systems with localized synthesis, Phys. Rev. E., 85 (2012), 046210.
[23] Y. Nec and M. J. Ward, An explicitly solvable nonlocal eigenvalue problem and the stability of a spike for a sub-diffusive reaction-diffusion system, Math. Model. Nat. Phenom., 8 (2013), pp. 55–87. · Zbl 1275.35020
[24] B. Novák and J. J. Tyson, Design principles of biochemical oscillators, Nat. Rev. Mol. Cell. Bio., 9 (2008), pp. 981–991.
[25] A. P. Peirce and H. Rabitz, Effect of defect structures on chemically active surfaces: A continuum approach, Phys. Rev. B., 38 (1998), pp. 1734–1753.
[26] J. A. Pelesko, Nonlinear stability considerations in thermoelastic contact, Trans. ASME J. Appl. Mech., 66 (1999), pp. 109–116.
[27] J. A. Pelesko, Nonlinear stability, thermoelastic contact, and the Barber condition, Trans. ASME J. Appl. Mech., 68 (2001), pp. 28–33. · Zbl 1110.74626
[28] S. Y. Shvartsman, E. Schütz, R. Imbihl, and I. G. Kevrekidis, Dynamics on microcomposite catalytic surfaces: The effect of active boundaries, Phys. Rev. Lett., 83 (1999), 2857.
[29] M. J. Ward and J. Wei, Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonlinear Sci., 13 (2003), pp. 209–264. · Zbl 1030.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.