zbMATH — the first resource for mathematics

Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation. (English) Zbl 1330.93248
Summary: Recently, sparsity-aware least mean square (LMS) algorithms have been proposed to improve the performance of the standard LMS algorithm for various sparse signals, such as the well-known zero-attracting LMS (ZA-LMS) algorithm and its reweighted ZA-LMS (RZA-LMS) algorithm. To utilize the sparsity of the channels in wireless communication and one of the inherent advantages of the RZA-LMS algorithm, we propose an adaptive reweighted zero-attracting sigmoid functioned variable-step-size LMS (ARZA-SVSS-LMS) algorithm by the use of variable-step-size techniques and parameter adjustment method. As a result, the proposed ARZA-SVSS-LMS algorithm can achieve faster convergence speed and better steady-state performance, which are verified in a sparse channel and compared with those of other popular LMS algorithms. The simulation results show that the proposed ARZA-SVSS-LMS algorithm outperforms the standard LMS algorithm and the previously proposed sparsity-aware algorithms for dealing with sparse signals.
Reviewer: Reviewer (Berlin)

93E24 Least squares and related methods for stochastic control systems
93C40 Adaptive control/observation systems
90B20 Traffic problems in operations research
93E10 Estimation and detection in stochastic control theory
93E03 Stochastic systems in control theory (general)
Full Text: DOI
[1] Korowajczuk, LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis (2011) · doi:10.1002/9781119970460
[2] Proakis, Digital Communications, 4. ed. (2001)
[3] Adachi, New direction of broadband CDMA techniques, Wireless Communications and Mobile Computing 7 (8) pp 969– (2007) · Zbl 05461152 · doi:10.1002/wcm.507
[4] Gui, Improved least mean square algorithm with application to adaptive sparse channel estimation, EURASIP Journal on Wireless Communications and Networking 2013 pp 1– (2013) · doi:10.1186/1687-1499-2013-204
[5] Li, Pilot-symbol-aided channel estimation for OFDM in wireless systems, IEEE Transactions on Vehicular Technology 49 (4) pp 1207– (2010) · doi:10.1109/25.875230
[6] Prodan, Performance of pilot-assisted channel estimation without feedback for broadband ANC systems using OFDM access, EURASIP Journal on Wireless Communications and Networking 2012 pp 1– (2012) · doi:10.1186/1687-1499-2012-315
[7] Wan, Semiblind sparse channel estimation for MIMO-OFDM systems, IEEE Transactions on Vehicular Technology 60 (6) pp 2569– (2011) · doi:10.1109/TVT.2011.2153218
[8] Nie W Zhang J Liu Y Sun F A robust channel estimation for broadband OFDM systems with virtual tones IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-fall) Ottawa, Canada 2010 1 5
[9] Donoho, Compressive sensing, IEEE Transactions on Information Theory 52 (4) pp 1289– (2006) · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[10] Meng, Compressive sensing based high-resolution channel estimation for OFDM system, IEEE Journal of Selected Topics in Signal Processing 6 (1) pp 15– (2012) · doi:10.1109/JSTSP.2011.2169649
[11] Haykin, Adaptive Filter Theory, 4. ed. (2001) · Zbl 0723.93070
[12] Godavarti, Partial update LMS algorithm, IEEE Transactions on Signal Processing 53 (7) pp 2382– (2005) · Zbl 1370.93275 · doi:10.1109/TSP.2005.849167
[13] Hung YF Wen JH An analysis on partial PIC multi-user detection with LMS algorithms for CDMA Proceedings of the 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC’03) 1 Beijing, China 2003 17 21
[14] Vaswani N Kalman filtered compressed sensing 15th IEEE International Conference on Image Processing (ICIP’08) San Diego, California, USA 2008 893 896
[15] Eksioglu, Sparsity regularised recursive least squares adaptive filtering, IET Signal Processing 5 (2) pp 480– (2011) · doi:10.1049/iet-spr.2010.0083
[16] Liu, Proportionate normalized least mean square algorithms based on coefficient difference, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E93-A (5) pp 972– (2010) · doi:10.1587/transfun.E93.A.972
[17] Chen Y Gu Y Hero AO Sparse LMS for system identification Proceedings of IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP’09) Taipei, Taiwan 2009 3125 3128
[18] Gu, L0 norm constraint LMS algorithms for sparse system identification, IEEE Signal Processing Letters 16 (9) pp 774– (2009) · doi:10.1109/LSP.2009.2024736
[19] Douglas, Performance comparison of two implementations of the leaky LMS adaptive filter, IEEE Transactions on Signal Processing 45 (8) pp 2125– (1997) · doi:10.1109/78.611231
[20] Shi, Convergence analysis of sparse LMS algorithms with l1-norm penalty based on white input signal, Signal Processing 90 (12) pp 3289– (2010) · Zbl 1197.94124 · doi:10.1016/j.sigpro.2010.05.015
[21] Wu, Gradient optimization p-norm-like constraint LMS algorithm for sparse system estimation, Signal Processing 93 (4) pp 967– (2013) · doi:10.1016/j.sigpro.2012.10.008
[22] Salman MS Jahromi MNS Hocanin A Kukrer O A weighted zero-attracting leaky-LMS algorithm Proceedings of the 20th International Conference on Software Telecommunications and Computer Networks (SoftCOM’12) Croatia 2012 1 3
[23] Taheri O Vorobyov SA Sparse channel estimation with L p -norm and reweighted L 1 -norm penalized least mean squares Proceedings of IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP’11) Prague, Czech Republic 2011 2864 2867
[24] Gui G Abolfazl M Fumiyuki A Least mean square/fourth algorithm for adaptive sparse channel estimation Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC’13) London, United Kingdom 2013 296 300
[25] Taheri, Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis, Signal Processing 104 (1) pp 70– (2014) · doi:10.1016/j.sigpro.2014.03.048
[26] Tan, A novel variable step-size LMS adaptive filtering algorithm based on sigmoid function, Journal of Data Acquisition & Processing 12 (3) pp 171– (1997)
[27] Gao, A variable step-size LMS adaptive filtering algorithm and its analysis, Acta Electronica Sinica 29 (8) pp 1094– (2001)
[28] Aboulnasr, A robust variable step-size LMS-type algorithm: analysis and simulation, IEEE Transactions on Signal Processing 45 (3) pp 631– (1997) · doi:10.1109/78.558478
[29] Wagner KT Doroslovachi MI Gain allocation in proportionate-type NLMS algorithms for fast decay of output error at all times Proceedings of IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP’09) Taipei, Taiwan 2009 3117 3120
[30] CandĂ©s, Enhancing sparsity by reweighted l1-minimization, Journal of Fourier Analysis and Applications 15 (5-6) pp 877– (2008) · Zbl 1176.94014 · doi:10.1007/s00041-008-9045-x
[31] Jin, A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework, IEEE Journal of Selected Topics in Signal Processing 4 (2) pp 409– (2010) · doi:10.1109/JSTSP.2009.2039173
[32] Wang, Quantized H control for nonlinear stochastic time-delay systems with missing measurements, IEEE Transactions on Automatic Control 57 (6) pp 1431– (2014) · Zbl 1369.93583 · doi:10.1109/TAC.2011.2176362
[33] Shen, H state estimation for complex networks with uncertain inner coupling and incomplete measurements, IEEE Transactions on Neural Networks and Learning Systems 24 (12) pp 2027– (2013) · doi:10.1109/TNNLS.2013.2271357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.