×

zbMATH — the first resource for mathematics

Observation and identification of mechanical systems via second order sliding modes. (English) Zbl 1330.93045
Summary: A second-order sliding-mode observer based on the modified super-twisting algorithm providing finite time exact observation is applied for system identification. The value of the equivalent output injection is used to identify perturbations directly. Continuous time versions of least square and forgetting factor methods are proposed to identify unknown time-invariant parameters respectively.

MSC:
93B07 Observability
70Q05 Control of mechanical systems
93B12 Variable structure systems
93C85 Automated systems (robots, etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alvarez J, J. Dyn. Sys., Meas., and Cont. 122 pp 687– (2000) · doi:10.1115/1.1317229
[2] Barbot, J and Floquet, T. 2004. ”A sliding mode approach of unknown input observers for linear systems”. 43th IEEE Conference on Decision and Control. 2004, Atlantis, Paradise Island, Bahamas. pp.1724–1729.
[3] Barbot, J, Boukhobza, T and Djemai, M. 1996. ”Sliding mode observer for triangular input form”.35th IEEE Conference on Decision and Control. 1996, Kobe, Japan. pp.1489–1490.
[4] Barbot JP, Sliding Mode Control in Engineering pp 103– (2002)
[5] Bartolini G, Inter. J. Cont. 76 pp 875– (2003) · Zbl 1070.93011 · doi:10.1080/0020717031000099010
[6] Davila J, IEEE Trans. Automat. Cont. 50 pp 1785– (2005) · Zbl 1365.93071 · doi:10.1109/TAC.2005.858636
[7] Edwards C, Sliding Mode Control (1998)
[8] Edwards C, Variable Structure Systems: Towards XXIst Century pp 253– (2002) · doi:10.1007/3-540-45666-X_11
[9] Eykhoff P, Automatica 26 pp 3– (1990) · doi:10.1016/0005-1098(90)90153-9
[10] Filippov AF, Differential Equations with Discontinuous Right-hand Sides (1988) · doi:10.1007/978-94-015-7793-9
[11] Fridman L, Variable Structure, Sliding Mode and Nonlinear Control pp 363– (1999) · doi:10.1007/BFb0109986
[12] Hashimoto, H, Utkin, V, Jian Xin, Xu and Hiroyuki Suzuki Harashima, F. 1990. ”Vss observer for linear time varying system”.Proceedings of IECON’90. 1990, Pacific Grove, CA. pp.34–39.
[13] Lei G, Identification and Stochastic Adaptive Control (1991)
[14] Levant A, Automatica 34 pp 379– (1998) · Zbl 0915.93013 · doi:10.1016/S0005-1098(97)00209-4
[15] Levant A, Inter. J. Cont. 76 pp 924– (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[16] Ljung L, IEEE Trans. Automat. Cont. 24 pp 37– (1979) · Zbl 0399.93054 · doi:10.1109/TAC.1979.1101943
[17] Ljung L, Automatica 26 pp 7– (1990) · Zbl 0714.93053 · doi:10.1016/0005-1098(90)90154-A
[18] Orlov Y, ASME J. Dyn. Sys., Meas. and Cont. 122 pp 725– (2000) · doi:10.1115/1.1320447
[19] Pisano A, Automatica 40 pp 1525– (2004) · Zbl 1055.93530 · doi:10.1016/j.automatica.2004.03.016
[20] Poznyak AS, Inter. J. Cont. 76 pp 986– (2003) · Zbl 1040.93064 · doi:10.1080/0020717031000099001
[21] Poznyak AS, Int. J. Syst. Sci. 30 pp 165– (1999) · Zbl 1066.62539 · doi:10.1080/002077299292515
[22] Shtessel YB, Asian J. Cont. 5 pp 498– (2003) · doi:10.1111/j.1934-6093.2003.tb00167.x
[23] Soderstrom T, System Identification (1989)
[24] Uktin VI, Sliding Modes in Control and Optimization (1992)
[25] Utkin V, Sliding Modes in Electromechanical Systems (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.