×

Implementation of transportation distance for analyzing FLIM and FRET experiments. (English) Zbl 1330.92062

Summary: Analysis of fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET) experiments in living cells is usually based on mean lifetimes computations. However, these mean lifetimes can induce misinterpretations. We propose in this work the implementation of the transportation distance for FLIM and FRET experiments in vivo. This non-fitting indicator, which is easy to compute, reflects the similarity between two distributions and can be used for pixels clustering to improve the estimation of the FRET parameters. We study the robustness and the discriminating power of this transportation distance, both theoretically and numerically. In addition, a comparison study with the largely used mean lifetime differences is performed. We finally demonstrate practically the benefits of the transportation distance over the usual mean lifetime differences for both FLIM and FRET experiments in living cells.

MSC:

92C55 Biomedical imaging and signal processing
92B99 Mathematical biology in general

Software:

EMD
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58-66 · doi:10.1002/jemt.10421
[2] Booth MJ, Wilson T (2004) Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J Microsc 214:36-42 · doi:10.1111/j.0022-2720.2004.01316.x
[3] Cole MJ, Siegel J, Webb SED, Jones R, Dowling K, Dayel MJ, Parsons-Karavassilis D, French PMW, Lever MJ, Sucharov LOD, Neil MAA, Juskaitis R, Wilson T (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246-257 · doi:10.1046/j.1365-2818.2001.00894.x
[4] Del Barrio E, Giné E, Matrán C (1999) Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann Probab 27:1009-1071 · Zbl 0958.60012
[5] Deville-Bonne D, Sellam O, Merola F, Lascu I, Desmadril M, Veron M (1996) Phosphorylation of nucleoside diphosphate kinase at the active site studied by steady-state and time-resolved fluorescence. Biochemistry 35:14643-14650 · doi:10.1021/bi960945m
[6] Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14-16 · doi:10.1529/biophysj.107.120154
[7] Diribarne G, Bensaude O (2009) 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol 6:122-128 · doi:10.4161/rna.6.2.8115
[8] Dulac C, Michels AA, Fraldi A, Bonnet F, Nguyen VT, Napolitano G, Lania L, Bensaude O (2005) Transcription-dependent association of multiple positive transcription elongation factor units to a HEXIM multimer. J Biol Chem 280:30619-30629 · doi:10.1074/jbc.M502471200
[9] Dziuda DM (2010) Data mining for genomics and proteomics. Wiley, London · doi:10.1002/9780470593417
[10] Esposito A, Gerritsen HC, Wouters FS (2005) Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis. Biophys J 89:4286-4299 · doi:10.1529/biophysj.104.053397
[11] Esposito A, Tiffert T, Mauritz JMA, Schlachter S, Bannister LH, Kaminski CF, Lew VL (2008) FRET imaging of hemoglobin concentration in plasmodium falciparum-infected red cells. PLos One 3:e3780 · doi:10.1371/journal.pone.0003780
[12] Festy F, Ameer-Beg SM, Ng T, Suhling K (2007) Imaging proteins in vivo using fluorescence lifetime microscopy. Mol BioSyst 3:381-391 · doi:10.1039/b617204k
[13] Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (Flim): spatial-resolution of microstructures on the nanosecond time-scale. Biophys Chem 48:221-239 · doi:10.1016/0301-4622(93)85012-7
[14] Heskes AM, Lincoln CN, Goodger JQD, Woodrow IE, Smith TA (2012) Multiphoton fluorescence lifetime imaging shows spatial segregation of secondary metabolites in Eucalyptus secretory cavities. J Microsc 247:33-42 · doi:10.1111/j.1365-2818.2011.03593.x
[15] Hoppe AD (2007) In: Shorte SL, Frischknecht F (eds) Imaging cellular and molecular biological functions. Springer, Berlin pp 157-181
[16] Krishnan RV, Saitoh H, Terada H, Centonze VE, Herman B (2003) Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev Sci Instrum 74:2714-2721 · doi:10.1063/1.1569410
[17] Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum Publishers, New York · doi:10.1007/978-1-4757-3061-6
[18] Ledoux M (1994) Isoperimetry and Gaussian analysis, http://www.math.univ-toulouse.fr/ledoux/Flour · Zbl 0874.60005
[19] Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149:271-280 · doi:10.1083/jcb.149.2.271
[20] Leray A, Spriet C, Trinel D, Heliot L (2009a) Three-dimensional polar representation for multispectral fluorescence lifetime imaging microscopy. Cytom A 75:1007-1014
[21] Leray A, Riquet FB, Richard E, Spriet C, Trinel D, Héliot L (2009b) Optimized protocol of a frequency domain fluorescence lifetime imaging microscope for FRET measurements. Microsc Res Tech 72:371-379
[22] Leray A, Spriet C, Trinel D, Blossey R, Usson Y, Héliot L (2011) Quantitative comparison of polar approach versus fitting method in time domain FLIM image analysis. Cytom Part A 79A:149-158 · doi:10.1002/cyto.a.20996
[23] Leray A, Spriet C, Trinel D, Usson Y, Héliot L (2012) Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation. J Microsc 248:66-76 · doi:10.1111/j.1365-2818.2012.03651.x
[24] Leray A, Padilla-Parra S, Roul J, Héliot L, Tramier M (2013) Spatio-temporal quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods. PLoS One 8:e69335 · doi:10.1371/journal.pone.0069335
[25] Ling H, Okada K (2007) An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans Pattern Anal Mach Intell 29:840-853 · doi:10.1109/TPAMI.2007.1058
[26] Padilla-Parra S, Auduge N, Coppey-Moisan M, Tramier M (2008) Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J 95:2976-2988 · doi:10.1529/biophysj.108.131276
[27] Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays 34:369-376 · doi:10.1002/bies.201100086
[28] Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99-121 · Zbl 1012.68705 · doi:10.1023/A:1026543900054
[29] Seidenari S, Arginelli F, Dunsby C, French PMW, Konig K, Magnoni C, Talbot C, Ponti G (2013) Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. Plos One 8:e70682 · doi:10.1371/journal.pone.0070682
[30] Silva L, Coutinho A, Fedorov A, Prieto M (2006) Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure. Biochimica et Biophys Acta 1758:452-459 · doi:10.1016/j.bbamem.2006.03.008
[31] Sipieter F, Vandame P, Spriet C, Leray A, Vincent P, Trinel D, Bodart JF, Riquet FB, Héliot L (2013) From FRET imaging to practical methodology for kinase activity sensing in living cells. Prog Mol Biol Transl Sci 113:145-216 · doi:10.1016/B978-0-12-386932-6.00005-3
[32] Suhling K, French PM, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13-22 · doi:10.1039/b412924p
[33] Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley, London · doi:10.1002/9783527650002
[34] Villani C (2009) Optimal transport: old and new. Springer, Berlin · Zbl 1156.53003
[35] Waharte F, Spriet C, Heliot L (2006) Setup and characterization of a multiphoton FLIM instrument for protein-protein interaction measurements in living cells. Cytom A 69:299-306 · doi:10.1002/cyto.a.20240
[36] Zhong H, Wu X, Huang H, Fan Q, Zhu Z, Lin S (2006) Vertebrate MAX-1 is required for vascular patterning in zebrafish. Proc Natl Acad Sci USA 103:16800-16805 · doi:10.1073/pnas.0603959103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.