×

Stabilizing the Higgs potential with a \(Z'\). (English) Zbl 1330.81222

Summary: Current data point toward metastability of the electroweak vacuum within the Standard Model. We study the possibility of stabilizing the Higgs potential in \(\mathrm{U}(1)\) extensions thereof. A generic \(Z'\) boson improves stability of the scalar potential in two ways: it increases the Higgs self-coupling, due to a positive contribution to the beta-function of the latter, and it decreases the top quark Yukawa coupling, which again has a stabilizing effect. We determine the range of \(\mathrm{U}(1)\) charges which leads to a stable electroweak vacuum. In certain classes of models, such stabilization is possible even if the \(Z'\) does not couple to the Higgs and is due entirely to the reduction of the top Yukawa coupling. We also study the effect of the kinetic mixing between the extra \(\mathrm{U}(1)\) and hypercharge gauge fields.

MSC:

81V22 Unified quantum theories

Software:

PyR@TE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Buttazzo, D.; Degrassi, G.; Giardino, P. P.; Giudice, G. F.; Sala, F.; Salvio, A.; Strumia, A., J. High Energy Phys., 1312, 089 (2013)
[2] Bezrukov, F.; Kalmykov, M. Y.; Kniehl, B. A.; Shaposhnikov, M., J. High Energy Phys., 1210, 140 (2012)
[3] Alekhin, S.; Djouadi, A.; Moch, S., Phys. Lett. B, 716, 214 (2012)
[4] Espinosa, J. R.; Giudice, G. F.; Riotto, A., J. Cosmol. Astropart. Phys., 0805, 002 (2008)
[5] Lebedev, O.; Westphal, A., Phys. Lett. B, 719, 415 (2013)
[6] Lebedev, O., Eur. Phys. J. C, 72, 2058 (2012)
[7] Elias-Miro, J.; Espinosa, J. R.; Giudice, G. F.; Lee, H. M.; Strumia, A., J. High Energy Phys., 1206, 031 (2012)
[8] Gonderinger, M.; Lim, H.; Ramsey-Musolf, M. J., Phys. Rev. D, 86, 043511 (2012)
[9] Chao, W.; Gonderinger, M.; Ramsey-Musolf, M. J., Phys. Rev. D, 86, 113017 (2012)
[10] Chakrabortty, J.; Konar, P.; Mondal, T., Phys. Rev. D, 89, 056014 (2014)
[11] Coriano, C.; Delle Rose, L.; Marzo, C., Phys. Lett. B, 738, 13 (2014)
[12] Appelquist, T.; Dobrescu, B. A.; Hopper, A. R., Phys. Rev. D, 68, 035012 (2003)
[13] Langacker, P.; Plumacher, M., Phys. Rev. D, 62, 013006 (2000)
[14] Green, M. B.; Schwarz, J. H., Phys. Lett. B, 149, 117 (1984)
[15] Buchmuller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Nucl. Phys. B, 785, 149 (2007)
[16] Holdom, B., Phys. Lett. B, 166, 196 (1986)
[17] Langacker, P., Rev. Mod. Phys., 81, 1199 (2009)
[18] Han, T.; Langacker, P.; Liu, Z.; Wang, L. T.
[19] Alcaraz, J.
[20] Chatrchyan, S., Phys. Lett. B, 720, 63 (2013)
[21] Arcadi, G.; Mambrini, Y.; Tytgat, M. H.G.; Zaldivar, B., J. High Energy Phys., 1403, 134 (2014)
[22] Lebedev, O.; Mambrini, Y., Phys. Lett. B, 734, 350 (2014)
[23] Chiang, C. W.; Nomura, T.; Yagyu, K., J. High Energy Phys., 1405, 106 (2014)
[24] Luo, M.x.; Xiao, Y., Phys. Lett. B, 555, 279 (2003)
[25] Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A., Comput. Phys. Commun., 185, 1130 (2014)
[26] Datta, A.; Elsayed, A.; Khalil, S.; Moursy, A., Phys. Rev. D, 88, 5, 053011 (2013)
[27] Basso, L.; Moretti, S.; Pruna, G. M., Phys. Rev. D, 82, 055018 (2010)
[28] Hook, A.; Izaguirre, E.; Wacker, J. G., Adv. High Energy Phys., 2011, 859762 (2011)
[29] Cline, J. M.; Dupuis, G.; Liu, Z.; Xue, W., J. High Energy Phys., 1408, 131 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.