zbMATH — the first resource for mathematics

Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes. (English) Zbl 1330.35324
The authors perform a numerical analysis of the hydrostatic Stokes problem appearing in the primitive equations of the ocean. They first prove well-posedness of the continuous problem and then focus of the finite element approximation of the problem in unstructured meshes.

35Q35 PDEs in connection with fluid mechanics
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI
[1] Azérad, P; Guillén, F, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, Siam J. Math. Anal., 33, 847-859, (2001) · Zbl 0999.35072
[2] Azérad, P, Analyse et approximation du problème de Stokes dans un bassin peu profond, C. R. Acad. Sci. Paris Sér. I Math., 318, 53-58, (1994) · Zbl 0795.76014
[3] Azérad, P.: Analyse des quations de Navier-Stokes en bassin peu profond et de l’quation de transport. Ph.D. thesis, Neuchtel (1996) · Zbl 0766.35039
[4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) · Zbl 0788.73002
[5] Besson, O; Laydi, MR, Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation, Math. Mod. Num. Anal., 26, 855-865, (1992) · Zbl 0765.76017
[6] Cushman-Roisin, B., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, New York (2009) · Zbl 1319.86001
[7] Chacón-Rebollo, T., Guillén-González, F.: An intrinsic analysis of the hydrostatic approximation of Navier-Stokes equations. C. R. Acad. Sci. Paris Srie I 330, 841-846 (2000) · Zbl 0746.76019
[8] Chacón-Rebollo, T; Gómez-Mármol, M; Sánchez-Muñoz, I, Numerical solution of the primitive equations of the Ocean by the orthogonal sub-scales vms method, Appl. Numer. Math., 62, 342-359, (2012) · Zbl 1237.86002
[9] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978) · Zbl 0383.65058
[10] Chacón-Rebollo, T., Rodríguez-Gómez, D.: Prismatic finite element solution of the primitive equations of the ocean · Zbl 1048.86005
[11] Chacón-Rebollo, T; Rodríguez-Gómez, D, A numerical solver for the primitive equations of the Ocean using term-by-term stabilization, Appl. Numer. Math., 55, 1-31, (2005) · Zbl 1072.76037
[12] Cao, C; Titi, ES, Global well-posedness of the three-dimensional viscous primitive equations of large scale Ocean and atmosphere dynamics, Ann. Math., 166, 245-267, (2007) · Zbl 1151.35074
[13] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, Berlin (2004) · Zbl 1059.65103
[14] Guillén-González, F; Masmoudi, N; Rodríguez-Bellido, MA, Anisotropic estimates and strong solutions of the primitive equations, Differ. Integral Equ., 14, 1381-1408, (2001) · Zbl 1161.76454
[15] Guillén-González, F; Rodríguez-Gómez, D, Bubble finite elements for the primitive equations of the Ocean, Numerische Mathematik, 101, 689-728, (2005) · Zbl 1095.76031
[16] Guillén-González, F., Rodríguez-Galván, J.R.: On the stability of approximations for the stokes problem using different finite element spaces for each component of the velocity. Submitted. Available at http://www.uca.es/dpto/C101/pags-personales/rafael.rodriguez/papers/stokes-velocity-fespaces.pdf (2012) · Zbl 1329.76172
[17] Kimmritz, M.: Equal-order Finite Elements of Hydrostatic Flow Problems. Ph.D. thesis, Kiel (2013)
[18] Lions, J-L; Temam, R; Wang, S, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, 5, 237-288, (1992) · Zbl 0746.76019
[19] Lions, J-L; Temam, R; Wang, S, On the equations of large scale Ocean, Nonlinearity, 5, 1007-1053, (1992) · Zbl 0766.35039
[20] Ortegón-Gallego, F, On distributions independent of xn in certain non-cylindrical domains and a de Rham lemma with a non-local constraint, Nonlinear Anal. Theory Methods Appl., 59, 335-345, (2004) · Zbl 1070.46029
[21] Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987) · Zbl 0713.76005
[22] Pironneau, O., Hecht, F., Le Hyaric, A., Morice, J.: FreeFEM++. http://www.freefem.org/
[23] Stenberg, R, A technique for analysing finite elements methods for viscuous incompressible flow, Int. J. Numer. Methods Fluids, 11, 835-948, (1990) · Zbl 0704.76017
[24] Temam, R.: Navier-Stokes equations: theory and numerical analysis. American Mathematical Society, New York (1977) · Zbl 0383.35057
[25] Temam, R, Some mathematical aspects of geophysical fluid dynamic equations, Milan J. Math., 71, 175-198, (2003) · Zbl 1048.86005
[26] Temam, R; Ziane, M; Friedlander (ed.); Serre, D (ed.), Some mathematical problems in geophysical fluid dynamics, No. 3, 535-658, (2004), New York · Zbl 1222.35145
[27] Ziane, M, Regularity results for Stokes type systems, Appl. Anal., 58, 263-292, (1995) · Zbl 0837.35030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.