zbMATH — the first resource for mathematics

Amenability and covariant injectivity of locally compact quantum groups. (English) Zbl 1330.22013
The paper is devoted to the connection between amenability of a locally compact group \(G\) and injectivity of the von Neumann algebra \(L(G)\) associated with the left regular representation. The amenability of \(G\) implies the injectivity of \(L(G)\), but the converse is not true in general, but it is true for inner amenable groups. In the present paper the authors show that the equivalence of the above properties is valid for all locally compact groups if \(L(G)\) is considered as a \(T(L_{2}(G))\)-module with respect to a natural action. They prove an appropriate version of this result for every locally compact quantum group.

22D15 Group algebras of locally compact groups
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
81R15 Operator algebra methods applied to problems in quantum theory
43A07 Means on groups, semigroups, etc.; amenable groups
46M10 Projective and injective objects in functional analysis
43A20 \(L^1\)-algebras on groups, semigroups, etc.
Full Text: DOI arXiv
[1] Aristov, Oleg Yu., Amenability and compact type for Hopf-von Neumann algebras from the homological point of view. Banach algebras and their applications, Contemp. Math. 363, 15-37, (2004), Amer. Math. Soc., Providence, RI · Zbl 1076.46042
[2] B\'edos, E.; Tuset, L., Amenability and co-amenability for locally compact quantum groups, Internat. J. Math., 14, 8, 865-884, (2003) · Zbl 1051.46047
[3] [CN] J. Crann and M. Neufang, Inner amenable locally compact quantum groups. preprint (2013).
[4] Christensen, Erik; Sinclair, Allan M., On von Neumann algebras which are complemented subspaces of \(B(H)\), J. Funct. Anal., 122, 1, 91-102, (1994) · Zbl 0817.46059
[5] Connes, A., Classification of injective factors. Cases \(II_{1},\) \(II_{∞ },\) \(III_{λ },\) \(λ ̸ =1\), Ann. of Math. (2), 104, 1, 73-115, (1976)
[6] Dales, H. G., Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series 24, xviii+907 pp., (2000), The Clarendon Press, Oxford University Press, New York · Zbl 0981.46043
[7] Dales, H. G.; Polyakov, M. E., Homological properties of modules over group algebras, Proc. London Math. Soc. (3), 89, 2, 390-426, (2004) · Zbl 1058.43003
[8] Desmedt, Pieter; Quaegebeur, Johan; Vaes, Stefaan, Amenability and the bicrossed product construction, Illinois J. Math., 46, 4, 1259-1277, (2002) · Zbl 1035.46042
[9] Effros, Edward G.; Ruan, Zhong-Jin, Operator spaces, London Mathematical Society Monographs. New Series 23, xvi+363 pp., (2000), The Clarendon Press, Oxford University Press, New York · Zbl 0969.46002
[10] Granirer, Edmond E., Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc., 189, 371-382, (1974) · Zbl 0292.43015
[11] [Ha] U. Haagerup, Decomposition of completely bounded maps on operator algebras. Unpublished results, Odense University, Denmark, 1980.
[12] Helemskii, A. Ya., Banach and locally convex algebras, Oxford Science Publications, xvi+446 pp., (1993), The Clarendon Press, Oxford University Press, New York
[13] Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin, Multipliers on a new class of Banach algebras, locally compact quantum groups, and topological centres, Proc. Lond. Math. Soc. (3), 100, 2, 429-458, (2010) · Zbl 1192.43002
[14] Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin, Completely bounded multipliers over locally compact quantum groups, Proc. Lond. Math. Soc. (3), 103, 1, 1-39, (2011) · Zbl 1250.22005
[15] Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin, Module maps over locally compact quantum groups, Studia Math., 211, 2, 111-145, (2012) · Zbl 1269.22004
[16] Junge, Marius; Neufang, Matthias; Ruan, Zhong-Jin, A representation theorem for locally compact quantum groups, Internat. J. Math., 20, 3, 377-400, (2009) · Zbl 1194.22003
[17] Kalantar, Mehrdad; Neufang, Matthias, Duality, cohomology, and geometry of locally compact quantum groups, J. Math. Anal. Appl., 406, 1, 22-33, (2013) · Zbl 1310.58003
[18] Kustermans, Johan; Vaes, Stefaan, Locally compact quantum groups, Ann. Sci. \'Ecole Norm. Sup. (4), 33, 6, 837-934, (2000) · Zbl 1034.46508
[19] Kustermans, Johan; Vaes, Stefaan, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., 92, 1, 68-92, (2003) · Zbl 1034.46067
[20] Lau, Anthony To Ming; Paterson, Alan L. T., Inner amenable locally compact groups, Trans. Amer. Math. Soc., 325, 1, 155-169, (1991) · Zbl 0718.43002
[21] May, G.; Neuhardt, E.; Wittstock, G., The space of completely bounded module homomorphisms, Arch. Math. (Basel), 53, 3, 283-287, (1989) · Zbl 0666.46054
[22] [N] M. Neufang, Abstrakte Harmonische Analyse und Modulhomomorphismen \"uber von Neumann-Algebren. PhD thesis, University of Saarland, 2000.
[23] Neufang, Matthias; Ruan, Zhong-Jin; Spronk, Nico, Completely isometric representations of \(M_{\rm cb}A(G)\) and \({\rm UCB}(\hat G)\), Trans. Amer. Math. Soc., 360, 3, 1133-1161, (2008) · Zbl 1142.22002
[24] Neufang, Matthias; Runde, Volker, Harmonic operators: the dual perspective, Math. Z., 255, 3, 669-690, (2007) · Zbl 1115.31005
[25] Pisier, Gilles, The operator Hilbert space \({\rm OH}\), complex interpolation and tensor norms, Mem. Amer. Math. Soc., 122, 585, viii+103 pp., (1996) · Zbl 0932.46046
[26] Pirkovskii, A. Yu., Biprojectivity and biflatness for convolution algebras of nuclear operators, Canad. Math. Bull., 47, 3, 445-455, (2004) · Zbl 1062.46037
[27] Renaud, P. F., Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc., 170, 285-291, (1972) · Zbl 0226.46065
[28] Ruan, Zhong-Jin, Amenability of Hopf von Neumann algebras and Kac algebras, J. Funct. Anal., 139, 2, 466-499, (1996) · Zbl 0896.46041
[29] Runde, Volker, Uniform continuity over locally compact quantum groups, J. Lond. Math. Soc. (2), 80, 1, 55-71, (2009) · Zbl 1188.46048
[30] So\l tan, Piotr M.; Viselter, Ami, A Note on Amenability of Locally Compact Quantum Groups, Canad. Math. Bull., 57, 2, 424-430, (2014) · Zbl 1304.46070
[31] Takesaki, Masamichi, A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem, Amer. J. Math., 91, 529-564, (1969) · Zbl 0182.18103
[32] Takesaki, M., Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences 125, xxii+518 pp., (2003), Springer-Verlag, Berlin · Zbl 1059.46031
[33] [To] J. Tomiyama, Tensor products and properties of projections of norm one in von Neumann algebras. Unpublished Lecture Notes, University of Copenghagen, 1970.
[34] Wood, Peter James, Homological algebra in operator spaces with applications to harmonic analysis, 146 pp., (1999), ProQuest LLC, Ann Arbor, MI
[35] [V] S. Vaes, Locally compact quantum groups. PhD thesis, Katholieke Universiteit, 2000. · Zbl 1034.46508
[36] Vaes, Stefaan; Vainerman, Leonid, On low-dimensional locally compact quantum groups. Locally compact quantum groups and groupoids, Strasbourg, 2002, IRMA Lect. Math. Theor. Phys. 2, 127-187, (2003), de Gruyter, Berlin · Zbl 1178.17017
[37] [VD] A. Van Daele, Locally compact quantum groups. A von Neumann algebra approach. preprint arXiv:math/0602212 (2006).
[38] Zobeidi, Amin, Every topologically amenable locally compact quantum group is amenable, Bull. Aust. Math. Soc., 87, 1, 149-151, (2013) · Zbl 1271.46055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.