×

zbMATH — the first resource for mathematics

Delayed sliding mode control. (English) Zbl 1329.93043
Summary: A new sliding mode control approach is introduced in this work with the dedicated mathematical tools. A time-delay modification/approximation of sign function is proposed, and it is shown that by substituting this new “sign” realization in the conventional sliding mode algorithms the main advantages of the sliding mode tools are preserved (like rejection of matched disturbances and hyper-exponential convergence, i.e. the rate of convergence to the origin is much faster than any exponential one, see A. Polyakov, D. Efimov, W. Perruquetti, J.-P. Richard [”Implicit Lyapunov-Krasovski functionals for time delay systems”, in Proc. 53rd IEEE CDC, LA (2014)] while the chattering is reduced. These results are illustrated and confirmed by numerical simulations for the first order sliding mode control and the super-twisting algorithm.

MSC:
93B12 Variable structure systems
93B40 Computational methods in systems theory (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acary, Vincent; Brogliato, Bernard, Implicit Euler numerical simulations of sliding mode systems. research report RR-6886, (2009), Inria
[2] Ambrosino, G.; Celentano, G.; Garofalo, F., Robust model tracking control for a class of nonlinear plant, IEEE Transactions on Automatic Control, AC-30, 3, 275-279, (1985) · Zbl 0558.93068
[3] Boiko, Igor, Discontinuous control systems: frequency-domain analysis and design, (2009), Birkhäuser · Zbl 1165.93002
[4] Burton, J. A.; Zinober, A. S.I., Continuous approximation of variable structure control, International Journal of Systems Science, 17, 6, 875-885, (1986) · Zbl 0599.93029
[5] Canudas-de Wit, C., & Perruquetti, W. (2002). Smoothing strategies for high-gain control. In Proc. IFAC Latin-American conference on automatic control. Mexico.
[6] (Chiasson, J.; Loiseau, J. J., Applications of time delay systems, Lecture notes in control and information sciences, Vol. 352, (2007), Springer) · Zbl 1110.93003
[7] Edwards, C., & Shtessel, Y. B. (2014). Continuous higher order sliding mode control based on adaptive disturbance compensation. In 13th international workshop on variable structure systems. VSS, June (pp. 1-5).
[8] Efimov, D.; Polyakov, A.; Fridman, E.; Perruquetti, W.; Richard, J.-P., Comments on finite-time stability of time-delay systems, Automatica, 50, 7, 1944-1947, (2014) · Zbl 1296.93150
[9] Esfandiari, F.; Khalil, H. K., Stability analysis of a continuous implementation of variable structure control, IEEE Transactions on Automatic Control, 36, 5, 616-620, (1991)
[10] Filipov, Aleksei Fedorovich, Differential equations with discontinuous righthand sides, (1988), Kluwer Academic Publishers
[11] Fridman, L., (Sliding mode enforcement after 1990: main results and some open problems, LNCIS, vol. 412, (2011), Springer-Verlag Berlin, Heidelberg), 3-57
[12] Gu, K.; Kharitonov, K. L.; Chen, J., (Stability of time-delay systems, Control engineering, (2003), Birkhäuser Boston)
[13] Heemels, W. P.M. H.; Weiland, S., Input-to-state stability and interconnections of dicontinuous dynamical systems, Automatica, 44, 12, 3079-3086, (2008) · Zbl 1153.93503
[14] Khalil, H. K., Nonlinear systems, (2002), Prentice Hall Upper Saddle River, New Jersey · Zbl 0626.34052
[15] Kolmanovskii, V.; Myshkis, A., Introduction to the theory and applications of functional differential equations, (1999), Kluwer Dordrecht, The Netherlands · Zbl 0917.34001
[16] Kolmanovsky, V. B.; Nosov, V. R., Stability of functional differential equations, (1986), Academic CA, San Diego · Zbl 0494.34052
[17] Levant, A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58, 6, 1247-1263, (1993) · Zbl 0789.93063
[18] Levant, A., Chattering analysis, IEEE Transactions on Automatic Control, 55, 6, 1380-1389, (2010) · Zbl 1368.93084
[19] Moreno, J.; Osorio, A., Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control, 57, 4, 1035-1040, (2012) · Zbl 1369.93568
[20] Moulay, E.; Dambrine, M.; Yeganefar, N.; Perruquetti, W., Finite-time stability and stabilization of time-delay systems, Systems & Control Letters, 57, 561-566, (2008) · Zbl 1140.93447
[21] Oza, H. B., Orlov, Y. V., Spurgeon, S. K., Aoustin, Y., & Chevallereau, C. (2014). Continuous second order sliding mode based robust finite time tracking of a fully actuated biped robot. In Proc. European control conference, ECC, June (pp. 2600-2605).
[22] Pepe, P.; Ito, H., On saturation, discontinuities, and delays, in iiss and ISS feedback control redesign, IEEE Transactions on Automatic Control, 57, 5, 1125-1140, (2012) · Zbl 1369.93562
[23] Perruquetti, W.; Barbot, J. P., Sliding mode control in engineering, (2002), Marcel Dekker, Hardcover
[24] Polyakov, A., Efimov, D., Perruquetti, W., & Richard, J.-P. (2014). Implicit Lyapunov-Krasovski functionals for time delay systems. In Proc. 53rd IEEE CDC, LA. · Zbl 1360.93505
[25] Polyakov, A.; Poznyak, A., Reaching time estimation for “super-twisting” second order sliding mode controller via Lyapunov function designing, IEEE Transactions on Automatic Control, 54, 8, 1951-1955, (2009) · Zbl 1367.93127
[26] Richard, J.-P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 39, 1667-1694, (2003) · Zbl 1145.93302
[27] Shtessel, Y. B.; Shkolnikov, I. A.; Brown, M. D.J., An asymptotic second-order smooth sliding mode control, Asian Journal of Control, 5, 498-504, (2003)
[28] Surkov, A. V., On functional-differential equations with discontinuous right-hand side, Differential Equations, 44, 2, 278-281, (2008) · Zbl 1191.34081
[29] Teel, Andrew R., Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE Transactions on Automatic Control, 43, 7, 960-964, (1998) · Zbl 0952.93121
[30] Utkin, V. I., Sliding modes in control optimization, (1992), Springer-Verlag Berlin · Zbl 0748.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.